Search results

1 – 10 of 676
Article
Publication date: 21 February 2020

Tanmay Basak

This paper aims to investigate the thermal performance involving larger heating rate, targeted heating, heating with least non-uniformity of the spatial distribution of…

179

Abstract

Purpose

This paper aims to investigate the thermal performance involving larger heating rate, targeted heating, heating with least non-uniformity of the spatial distribution of temperature and larger penetration of heating within samples vs shapes of samples (circle, square and triangular).

Design/methodology/approach

Galerkin finite element method (GFEM) with adaptive meshing in a composite domain (free space and sample) is used in an in-house computer code. The finite element meshing is done in a composite domain involving triangle embedded within a semicircular hypothetical domain. The comparison of heating pattern is done for various shapes of samples involving identical cross-sectional area. Test cases reveal that triangular samples can induce larger penetration of heat and multiple heating fronts. A representative material (beef) with high dielectric loss corresponding to larger microwave power or heat absorption in contrast to low lossy samples is considered for the current study. The average power absorption within lossy samples has been computed using the spatial distribution and finite element basis sets. Four regimes have been selected based on various local maxima of the average power for detailed investigation. These regimes are selected based on thin, thick and intermediate limits of the sample size corresponding to the constant area of cross section, Ac involving circle or square or triangle.

Findings

The thin sample limit (Regime 1) corresponds to samples with spatially invariant power absorption, whereas power absorption attenuates from exposed to unexposed faces for thick samples (Regime 4). In Regimes 2 and 3, the average power absorption non-monotonically varies with sample size or area of cross section (Ac) and a few maxima of average power occur for fixed values of Ac involving various shapes. The spatial characteristics of power and temperature have been critically analyzed for all cross sections at each regime for lossy samples. Triangular samples are found to exhibit occurrence of multiple heating fronts for large samples (Regimes 3 and 4).

Practical implications

Length scales of samples of various shapes (circle, square and triangle) can be represented via Regimes 1-4. Regime 1 exhibits the identical heating rate for lateral and radial irradiations for any shapes of lossy samples. Regime 2 depicts that a larger heating rate with larger temperature non-uniformity can occur for square and triangular-Type 1 lossy sample during lateral irradiation. Regime 3 depicts that the penetration of heat at the core is larger for triangular samples compared to circle or square samples for lateral or radial irradiation. Regime 4 depicts that the penetration of heat is still larger for triangular samples compared to circular or square samples. Regimes 3 and 4 depict the occurrence of multiple heating fronts in triangular samples. In general, current analysis recommends the triangular samples which is also associated with larger values of temperature variation within samples.

Originality/value

GFEM with generalized mesh generation for all geometries has been implemented. The dielectric samples of any shape are surrounded by the circular shaped air medium. The unified mesh generation within the sample connected with circular air medium has been demonstrated. The algorithm also demonstrates the implementation of various complex boundary conditions in residuals. The numerical results compare the heating patterns for all geometries involving identical areas. The thermal characteristics are shown with a few generalized trends on enhanced heating or targeted heating. The circle or square or triangle (Type 1 or Type 2) can be selected based on specific heating objectives for length scales within various regimes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 January 2016

R.P. Pawar and Vijaya Puri

– This paper aims to study the structural, electrical and microwave properties of (Sr0.6Ca0.4) (CoyMn1−y) O3 (0.2 ≤ y ≤ 1.0) thick-film ceramics.

Abstract

Purpose

This paper aims to study the structural, electrical and microwave properties of (Sr0.6Ca0.4) (CoyMn1−y) O3 (0.2 ≤ y ≤ 1.0) thick-film ceramics.

Design/methodology/approach

The thick films of (Sr0.6Ca0.4) (CoyMn1−y) O3 (0.2 ≤ y ≤ 1.0) on the alumina substrate have been delineated using screen printing technique. The structural analysis was carried out using an X-ray diffraction method and scanning electron microscopy. The direct current (DC) electrical resistivity is measured using a two-probe method. Microwave absorption was studied in the 8-18 GHz frequency range by using the Waveguide Reflectometer Method. The permittivity and permeability in the 8-18 GHz frequency range were measured by using Voltage Standing Wave Ratio slotted section method.

Findings

The thick films have orthorhombic perovskite structure with dominant (020) plane. By using first-principle calculation method, theoretical and experimental lattice parameter and cell volume of (Sr0.6Ca0.4) (CoyMn1−y) O3 are matched with each other. The cobalt content changes the morphology from plates to needles. The DC electrical resistivity increases with increase in Co content and decreases with increase in temperature. (Sr0.6Ca0.4) (CoyMn1−y) O3 thick film shows 75 per cent microwave absorption both in the X band and Ku band. The microwave permittivity and permeability decreases with increase in frequency and Co content.

Originality/value

Structural, electrical and microwave properties of (Sr0.6Ca0.4) (CoyMn1−y) O3 (0.2 ≤ y ≤ 1.0). Thick film ceramics on alumina substrate is reported for the first time.

Details

Microelectronics International, vol. 33 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 5 January 2015

N. Patil, N.B. Velhal, R. Pawar and Vijaya Puri

The purpose of this article is to study the effect of ferrite content on electric, magnetic and microwave properties of screen-printed y(Ni0.4Co0.2Cd0.4Fe2O4) + (1 …

Abstract

Purpose

The purpose of this article is to study the effect of ferrite content on electric, magnetic and microwave properties of screen-printed y(Ni0.4Co0.2Cd0.4Fe2O4) + (1 − y)Pb(Zr0.52Ti0.48)O3 (y = 0.0, 0.15, 0.30, 0.45, 1.0) thick films on alumina.

Design/methodology/approach

Thick films of ferrite–ferroelectric composite on alumina substrate have been delineated using screen printing technique. The structural analysis was carried out using X-ray diffraction method and scanning electron microscopy. The DC electrical resistivity was measured using the two-probe method. The magnetic measurement was carried out using a vibrating sample magnetometer. Microwave absorption was studied in the 8-18 GHz frequency range by using the vector network analyzer (N5230A). The permittivity in the 8-18 GHz frequency range was measured by using voltage standing wave ratio slotted section method.

Findings

The formation of two individual ferrite–ferroelectric phases in composite thick films was confirmed by the X-ray diffraction patterns. The scanning electron microscope morphologies show the growth of cobalt-substituted nickel cadmium ferrite grains which are well dispersed in lead zirconium titanate matrix. The DC electrical resistivity increases with increase in ferrite content and decreases with increase in temperature. The present ferrite shows ferromagnetic nature and it increases saturation magnetization and coercivity of the composite thick films. Tuning properties are observed in the Ku-band and broadband X-band microwave absorption is observed in the composite thick films. The imaginary part of permittivity increases with an increase in ferrite content, which increases microwave absorption. The real part of microwave permittivity varied from 17 to around 22 with an increase in ferrite content and it decreases with frequency. The microwave conductivity, which increases with an increase in ferrite content, reveals the loss of polaron conduction, which supports the dielectric loss in the microwave region.

Originality/value

Electric, magnetic and microwave properties of screen-printed y(Ni0.4Co0.2Cd0.4Fe2O4) + (1 − y)Pb(Zr0.52Ti0.48)O3 (y = 0.0, 0.15, 0.30, 0.45, 1.0) composite thick films on alumina substrate is reported for the first time.

Details

Microelectronics International, vol. 32 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 3 August 2010

D.C. Kulkarni and Vijaya Puri

The aim of this paper is to investigate microwave Ku band absorbance, complex permittivity, and permeability of SrFe12O19 thick films by a simple and novel waveguide technique.

Abstract

Purpose

The aim of this paper is to investigate microwave Ku band absorbance, complex permittivity, and permeability of SrFe12O19 thick films by a simple and novel waveguide technique.

Design/methodology/approach

The glass frit free or fritless strontium hexaferrite thick films were formulated on alumina by screen printing technique from the powder synthesized by chemical co precipitation method for pH 11 adjusted during the reaction. The 13‐18 GHz frequency band microwave absorbance of the SrFe12O19 thick films by a simple waveguide method. The complex permittivity and permeability of strontium hexaferrite thick films was measured by voltage standing wave ratio technique.

Findings

SrFe12O19 thick films show high ∼80 percent absorbance in the whole 13‐18 GHz frequency band. The thickness dependant microwave properties of strontium hexaferrite thick films were observed. The real permittivity ε′ lies in between eight and 35 with the variation in thickness of the thick film SrFe12O19. The real microwave permeability μ′ of strontium hexaferrite thick films lies in the range 1.12‐6.41. The resonance type behavior was observed at frequency 14.3 GHz. The SrFe12O19 thick film of thickness 30 μm could be a wide band (∼5,000 MHz) absorber with absorbance ∼87 percent for the whole 13‐18 GHz frequency band.

Originality/value

The complex permeability of strontium hexaferrite thick films was measured by simple novel waveguide method. The high absorbance (∼87 percent) of thick film SrFe12O19 over a broad band ∼5,000 MHz will be useful in achieving RAM coatings required for 13‐18 GHz frequency band.

Details

Microelectronics International, vol. 27 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 17 May 2021

Akash K. Gupta, Rahul Yadav, Malay K. Das and Pradipta K. Panigrahi

This paper aims to present the implementation of a multi-layer radiation propagation model in simulations of multi-phase flow and heat transfer, for a dissociating methane hydrate…

Abstract

Purpose

This paper aims to present the implementation of a multi-layer radiation propagation model in simulations of multi-phase flow and heat transfer, for a dissociating methane hydrate reservoir subjected to microwave heating.

Design/methodology/approach

To model the induced heterogeneity due to dissociation of hydrates in the reservoir, a multiple homogeneous layer approach, used in food processes modelling, is suggested. The multi-layer model is incorporated in an in-house, multi-phase, multi-component hydrate dissociation simulator based on the finite volume method. The modified simulator is validated with standard experimental results in the literature and subsequently applied to a hydrate reservoir to study the effect of water content and sand dielectric nature on radiation propagation and hydrate dissociation.

Findings

The comparison of the multi-layer model with experimental results show a maximum difference in temperature estimation to be less than 2.5 K. For reservoir scale simulations, three homogeneous layers are observed to be sufficient to model the induced heterogeneity. There is a significant contribution of dielectric properties of sediments and water content of the reservoir in microwave radiation attenuation and overall hydrate dissociation. A high saturation reservoir may not always provide high gas recovery by dissociation of hydrates in the case of microwave heating.

Originality/value

The multi-layer approach to model microwave radiation propagation is introduced and tested for the first time in dissociating hydrate reservoirs. The multi-layer model provides better control over reservoir heterogeneity and interface conditions compared to existing homogeneous models.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 August 2018

Andreas Rosin, Michael Hader, Corinna Drescher, Magdalena Suntinger, Thorsten Gerdes, Monika Willert-Porada, Udo S. Gaipl and Benjamin Frey

This paper aims to investigate in a self-designed closed loop reactor process conditions for thermal inactivation of B16 melanoma cells by microwave and conventional heating.

Abstract

Purpose

This paper aims to investigate in a self-designed closed loop reactor process conditions for thermal inactivation of B16 melanoma cells by microwave and conventional heating.

Design/methodology/approach

Besides control experiments (37°C), inactivation rate was determined in the range from 42°C to 46°C. Heating was achieved either by microwave radiation at 2.45 GHz or by warm water. To distinguish viable from dead cells, AnnexinV staining method was used and supported by field effect scanning electron microscopy (FE-SEM) imaging. Furthermore, numerical simulations were done to get a closer look into both heating devices. To investigate the thermal influence on cell inactivation and the differences between heating methods, a reaction kinetics approach was added as well.

Findings

Control experiments and heating at 42°C resulted in low inactivation rates. Inactivation rate at 44°C remained below 12% under conventional, whereas it increased to >70% under microwave heating. At 46°C, inactivation rate attained 68% under conventional heating; meanwhile, even 88% were determined under microwave heating. FE-SEM images showed a porous membrane structure under microwave heating in contrast to mostly intact conventional heated cells. Numerical simulations of both heating devices and a macroscopic Arrhenius approach could not sufficiently explain the observed differences in inactivation.

Originality/value

A combination of thermal and electrical effects owing to microwave heating results in higher inactivation rates than conventional heating achieves. Nevertheless, it was not possible to determine the exact mechanisms of inactivation under microwave radiation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 1989

J.S. Choi, M. Bhalodia, S. Samph, P. Snowden, P. Yahner and K.J. Scoles

Thick film superconductors have been produced by screen printing and annealing pastes made from oxide powders and pre‐annealed powders. These films have been analysed by X‐ray…

Abstract

Thick film superconductors have been produced by screen printing and annealing pastes made from oxide powders and pre‐annealed powders. These films have been analysed by X‐ray diffraction, microwave absorption, resistance vs. temperature measurements, and adhesion tests. Results show the correlation between structural and electrical properties.

Details

Microelectronics International, vol. 6 no. 2
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 17 May 2021

Vivek Kumar Tiwary, Arunkumar P. and Vinayak R. Malik

Three-dimensional (3D) printing, one of the important technological pillars of Industry 4.0, is changing the landscape of future manufacturing. However, the limited build volume…

Abstract

Purpose

Three-dimensional (3D) printing, one of the important technological pillars of Industry 4.0, is changing the landscape of future manufacturing. However, the limited build volume of a commercially available 3D printer is one inherent constraint, which holds its acceptability by the manufacturing business leaders. This paper aims to address the issue by presenting a novel classification of the possible ways by which 3D-printed parts can be joined or welded to achieve a bigger-sized component.

Design/methodology/approach

A two-step literature review is performed. The first section deals with the past and present research studies related to adhesive bonding, mechanical interlocking, fastening and big area additive manufacturing of 3D printed thermoplastics. In the second section, the literature searches were focused on retrieving details related to the welding of 3D printed parts, specifically related to friction stir welding, friction (spin) welding, microwave and ultrasonic welding.

Findings

The key findings of this review study comprise the present up-to-date research developments, pros, cons, critical challenges and the future research directions related to each of the joining/welding techniques. After reading this study, a better understanding of how and which joining/welding technique to be applied to obtain a bigger volume 3D printed component will be acquired.

Practical implications

The study provides a realistic approach for the joining of 3D printed parts made by the fused deposition modeling (FDM) technique.

Originality/value

This is the first literature review related to joining or welding of FDM-3D printed parts helping the 3D printing fraternity and researchers, thus increasing the acceptability of low-cost FDM printers by the manufacturing business leaders.

Details

Rapid Prototyping Journal, vol. 27 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 April 1980

Roger Collison

During cooking, a complex series of physical and chemical changes takes place. These vary according to the commodity and cooking method but may include changes in moisture, fat…

Abstract

During cooking, a complex series of physical and chemical changes takes place. These vary according to the commodity and cooking method but may include changes in moisture, fat content, flavour, texture, colour and nutrient composition. These changes depend on the temperature — time relation within the food, and this in turn depends on the transfer of heat to the food and within the food. Research into this topic has been carried out in the Department of Catering Studies, Huddersfield Polytechnic for some years. A series of papers have been or are about to be published, and in this article Roger Collison, brings together the results of this work.

Details

Nutrition & Food Science, vol. 80 no. 4
Type: Research Article
ISSN: 0034-6659

Article
Publication date: 7 January 2021

Fatma Bakal, Ahmet Yapici, Muharrem Karaaslan and Oğuzhan Akgöl

The purpose of this paper is to investigate the effect of doping element on the microwave absorption performance of hexagonal nano boron nitride (h-nBN)-reinforced basalt fabric…

Abstract

Purpose

The purpose of this paper is to investigate the effect of doping element on the microwave absorption performance of hexagonal nano boron nitride (h-nBN)-reinforced basalt fabric (BF)/epoxy composites. A new type of hybrid composite that will be produced by the use of boron nitride as an additive that leads to increased radar absorption capability will be developed and a new material that can be used in aeronautical radar applications.

Design/methodology/approach

This study is focused on the microwave absorption properties of h-nBN doped basalt fabric-reinforced epoxy composites. Basalt fabric (BF)/epoxy composites (pure composites) and the BF/h-nBN (1 Wt.% h-nBN doped composites) hybrid composites were fabricated by vacuum infusion method. Phase identification of the composites were performed using X-ray diffraction (XRD), the 2θ scan range was from 10 to 60 with the scanning speed of 3°/min and surface morphologies of the composites were investigated using scanning electron microscopy (SEM). Microwave properties of samples were investigated through transmission/reflection measurements in Agilent brand 2-Port PNA-L Network Analyzer in the frequency range of 3–18 GHz. The prepared sample is positioned between two horn antennas with and without metal plate.

Findings

Experimental results show that h-nBN doped composite was synthesized successfully and the produced hexagonal nano boron nitride-added fiber laminated composite material has good absorption behavior when they are used with metallic sheets and good for isolation applications at many points in the 3–18 GHz band.

Originality/value

This paper will contribute to the literature on the use of basalt fabric, which are new types of fibers, and hexagonal nano boron nitride and the effects of boron nitride on radar absorption properties of composite material. It presents detail characterization of each composite by using XRD and scanning electron microscopy.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 676