Search results

1 – 10 of 422
Article
Publication date: 8 October 2018

Binnur Sagbas

The purpose of this paper is to investigate applicability of hexagonal boron nitride (h-BN) powder as a solid lubricant additive in coconut oil and to determine the tribological…

Abstract

Purpose

The purpose of this paper is to investigate applicability of hexagonal boron nitride (h-BN) powder as a solid lubricant additive in coconut oil and to determine the tribological behavior of PEEK rubbed with DIN2080 tool steel, under prepared green lubricating condition.

Design/methodology/approach

In this study, tiribological performance of PEEK against the DIN2080 tool steel is investigated with green lubricant. Coconut oil was used as green lubricant and 4 per cent wt. h-BN powder was added as lubricant additive into the coconut oil. Reciprocal pin-plate tribological test were applied under dry, coconut oil and coconut oil+h-BN lubrication condition. Friction coefficients were recorded and wear behavior of the samples investigated by mass loss measurement and topographical inspection of wear track by optical profilometer.

Findings

Using coconut oil as lubricant provided 80 per cent reduction of friction coefficient and 33.4 per cent reduction of wear rate. Addition of h-BN into the coconut oil provide 84 per cent reduction of friction coefficient and 56 per cent reduction of wear rate. The results showed that vegetable oil is promising lubricant for sustainable manufacturing. h-BN serves to increase lubricant performance and decrease wear of the surfaces.

Practical implications

Petrochemical lubricants are one of the major sources of environmental pollution and health hazards. Development and use of environmental and health friendly lubricants support sustainability and reduce wear, friction and energy consumption. With this consciousness, recent studies have focused on green tribology and green lubricants such as vegetable oils, ionic liquid bio-lubricants and bio-based polymers.

Originality/value

In literature study coconut oil was proposed as green lubricant while h-BN powder was proposed as solid lubricant. However, applicability of h-BN powder in coconut oil has not been explored yet. Moreover, wear and friction property of PEEK material with DIN 2080 tool steel pair surface has not been studied yet with green lubricants.

Details

Industrial Lubrication and Tribology, vol. 72 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 December 2021

Saquib Rouf, Ankush Raina, Mir Irfan Ul Haq and Nida Naveed

The involvement of wear, friction and lubrication in engineering systems and industrial applications makes it imperative to study the various aspects of tribology in relation with…

Abstract

Purpose

The involvement of wear, friction and lubrication in engineering systems and industrial applications makes it imperative to study the various aspects of tribology in relation with advanced technologies and concepts. The concept of Industry 4.0 and its implementation further faces a lot of barriers, particularly in developing economies. Real-time and reliable data is an important enabler for the implementation of the concept of Industry 4.0. For availability of reliable and real-time data about various tribological systems is crucial in applying the various concepts of Industry 4.0. This paper aims to attempt to highlight the role of sensors related to friction, wear and lubrication in implementing Industry 4.0 in various tribology-related industries and equipment.

Design/methodology/approach

A through literature review has been done to study the interrelationships between the availability of tribology-related data and implementation of Industry 4.0 are also discussed. Relevant and recent research papers from prominent databases have been included. A detailed overview about the various types of sensors used in generating tribological data is also presented. Some studies related to the application of machine learning and artificial intelligence (AI) are also included in the paper. A discussion on fault diagnosis and cyber physical systems in connection with tribology has also been included.

Findings

Industry 4.0 and tribology are interconnected through various means and the various pillars of Industry 4.0 such as big data, AI can effectively be implemented in various tribological systems. Data is an important parameter in the effective application of concepts of Industry 4.0 in the tribological environment. Sensors have a vital role to play in the implementation of Industry 4.0 in tribological systems. Determining the machine health, carrying out maintenance in off-shore and remote mechanical systems is possible by applying online-real-time data acquisition.

Originality/value

The paper tries to relate the pillars of Industry 4.0 with various aspects of tribology. The paper is a first of its kind wherein the interdisciplinary field of tribology has been linked with Industry 4.0. The paper also highlights the role of sensors in generating tribological data related to the critical parameters, such as wear rate, coefficient of friction, surface roughness which is critical in implementing the various pillars of Industry 4.0.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 23 November 2021

Qiang Li, Qinglei Liu, Yujun Wang, Shuo Zhang, Yujing Du, Bin Li and Wei-Wei Xu

The stringent requirements for environmental protection have induced the extensive applications of water-lubricated journal bearings in marine propulsion. The nonlinear dynamic…

Abstract

Purpose

The stringent requirements for environmental protection have induced the extensive applications of water-lubricated journal bearings in marine propulsion. The nonlinear dynamic analysis of multiple grooved water-lubricated bearings (MGWJBs) has not been fully covered so far in the literature. This study aims to conduct the nonlinear dynamic analysis of the instability for MGWJBs.

Design/methodology/approach

An attenuation rate interpolation method is proposed for the determination of the critical instability speed. Based on a structured mesh movement algorithm, the transient hydrodynamic force model of MGWJBs is set up. Furthermore, the parameters’ analysis of nonlinear instability for MGWJBs is conducted. The minimum water film thickness, side leakage, friction torque and power loss of friction are fully analyzed.

Findings

With the increase of speed, the journal orbits come across the steady state equilibrium motion, sub-harmonic motion and limit circle motion successively. At the limit circle motion stage, the orbits are much larger than that of steady state equilibrium and sub-harmonic motion. The critical instability speed increases when the spiral angle decreases or the groove angle increases. The minimum water film thickness peak is at the rotor speed of 4,000 r/min for the MGWJB with Sa = 0°. As rotor speed increases, the side leakage decreases slightly while the friction torque and the power loss of friction increase gradually.

Originality/value

Present research provides a beneficial reference for the dynamic mechanism analysis and design of MGWJBs.

Details

Industrial Lubrication and Tribology, vol. 73 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 23 December 2020

Raj Shah, Mathias Woydt, Nabill Huq and Andreas Rosenkranz

This paper aims to present a comprehensive perspective on how tribology and sustainability are related and intertwined and are linked to CO2 emissions. This paper emphasizes on…

Abstract

Purpose

This paper aims to present a comprehensive perspective on how tribology and sustainability are related and intertwined and are linked to CO2 emissions. This paper emphasizes on how tribological aspects affect everybody’s life and how tribological research and progress can improve energy efficiency, sustainability and quality of life.

Design/methodology/approach

Based upon available data and predictions for the next 50 years, the potential of tribological research and development is addressed.

Findings

The effects of tribological design can significantly increase energy savings and reduce CO2 emissions. Taking advantage of tribological technologies and applying them to current infrastructure would have the largest energy savings coming from the transportation and power generation at 25% and 20%, respectively. Implementing these technologies can also cut down global CO2 emissions by about 1,460 megatons of CO2 per year in the immediate future and 3,140 megatons of CO2 per year in the long term. The extraction and processing of resources inevitably generates CO2. Doubling the lifetime of machine components and the use of circular economy reduces the material footprint with associated reductions in CO2.

Originality/value

This perspective summarizes concisely the interrelation of tribology and sustainability with CO2.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2020-0356/

Details

Industrial Lubrication and Tribology, vol. 73 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Content available
Article
Publication date: 22 April 2022

Mohd Fadzli Bin Abdollah

210

Abstract

Details

Industrial Lubrication and Tribology, vol. 74 no. 4
Type: Research Article
ISSN: 0036-8792

Content available
Article
Publication date: 7 December 2021

Jitendra Kumar Katiyar, T.V.V.L.N. Rao, Mir Irfan Ul Haq and Mohd Fadzli Bin Abdollah

263

Abstract

Details

Industrial Lubrication and Tribology, vol. 73 no. 9
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 3 August 2021

P. Pranav, E. Sneha and S. Rani

This paper aims to provide a detailed review of various cutting fluids (CFs).

Abstract

Purpose

This paper aims to provide a detailed review of various cutting fluids (CFs).

Design/methodology/approach

Friction and wear are inevitable in machine parts in motion. The industrial sector uses various kinds of lubricants, which include engine oils, CFs, hydraulic fluids, greases, etc. to control friction and wear. The main purpose of using CF is to remove heat produced during machining and to reduce cutting forces, tool wear and energy associated with it. Thus, it increases the productivity and quality of the manufacturing process. But more than 80% of the CFs used in the industries now are mineral oil-based. These mineral oils and additives are highly undesirable because of their toxicity, nonbiodegradability, pollution and ecological problems. Hence, these petroleum-based oils in the lubrication system can be substituted with alternatives such as vegetable-based CF. Several studies are being conducted in the field of eco-friendly CFs. Because of the variance in fatty acid profile and availability, the selection of vegetable oils (VOs) is another problem faced nowadays. The present study is focused on bio-based oils and many eco-friendly additives. Various machining processes and comparisons relating to the same have also been made. The aim is to minimize the use of mineral oil and thereby introduce sustainability in production.

Findings

In this present study, bio-based oils, additives and various characteristic behavior of them in machining are being discussed. The VOs are found to be a potential base oil for industrial CFs.

Originality/value

This paper describes the importance of sustainable CFs.

Details

Industrial Lubrication and Tribology, vol. 73 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Content available
Article
Publication date: 10 August 2015

Carsten Gachot

159

Abstract

Details

Industrial Lubrication and Tribology, vol. 67 no. 5
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 13 January 2020

Noor Ayuma Mat Tahir, Mohd Fadzli Bin Abdollah, Noreffendy Tamaldin, Hilmi Amiruddin, Mohd Rody Bin Mohamad Zin and S. Liza

This paper aims to examine the friction and wear performance of the graphene synthesized from fruit cover plastic waste and oil palm fiber (OPF).

Abstract

Purpose

This paper aims to examine the friction and wear performance of the graphene synthesized from fruit cover plastic waste and oil palm fiber (OPF).

Design/methodology/approach

The graphene was synthesized by using a chemical vapor deposition method, where a copper sheet was used as the substrate. The dry sliding test was performed by using a micro ball-on-disc tribometer at various sliding speeds and applied loads.

Findings

The results show that both as-grown graphenes decrease the coefficient of friction significantly. Likewise, the wear rate is also lower at higher sliding speed and applied load. For this study, OPF is proposed as the best solid carbon source for synthesizing the graphene.

Originality/value

The main contribution of this study is opening a new perspective on the potentials of producing graphene from solid waste materials and its effect on the tribological performance.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0486

Details

Industrial Lubrication and Tribology, vol. 72 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 March 2022

Mihail Zagorski, Georgi Todorov, Nikolay Nikolov, Yavor Sofronov and Mara Kandeva

The purpose of this study is to investigate the influence of the printing temperature on several tribological parameters.

Abstract

Purpose

The purpose of this study is to investigate the influence of the printing temperature on several tribological parameters.

Design/methodology/approach

Polylactic acid (PLA) samples are produced at different printing temperatures. Results for the influence of the printing temperature on linear wear, wear intensity, wear resistance, roughness and microhardness in condition of reverse sliding friction of tribosystems with two different types of counterbodies were obtained.

Findings

In view of the experiments performed and a thorough analysis of the data obtained, it can be concluded that the printing temperature of PLA parts is directly related to their wear resistance – the higher the printing temperature, the greater the wear resistance, i.e. when making PLA machinery elements (which are working under conditions of friction and wear, e.g. gears, plain bearings and so on), it is appropriate to print them at a higher temperature.

Originality/value

To the best of the authors’ knowledge, the topic of this study is original and essential for future developments.

Details

Industrial Lubrication and Tribology, vol. 74 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 422