Search results

1 – 10 of over 3000

Abstract

Purpose

The purpose of this study is to analyse the problem of high binder content in sand mould and to solve it. Meanwhile, to increase build speed, especially for heavy casting’s sand mould with a high value in layer height, such as 2 mm in construction instead of the industry standard of 0.3 mm, line forming for three-dimensional (3D) sand mould printing is researched.

Design/methodology/approach

Brief introduction of 3D sand mould printing and key issues are given first. Then, this paper quantitatively analyses binder content in sand mould. Finally, to acquire sand mould with appropriate binder content and high build speed, line forming combining traditional furan no-bake sand manufacture technique is researched, as well as relevant feasible schemes and current progress.

Findings

The study shows that compared with traditional technique, binder content in sand mould produced by available 3D printing technique is too high, bad for sand mould’s properties and quality of castings, while line forming brings guaranteed binder content and improved build speed.

Research limitations/implications

More experiments are needed to demonstrate quantitative analysis of binder content and to obtain flowability of moist sand, detailed structure design of nozzle and practical build speed, as well as methods of circulation of materials considering solidification time.

Practical implications

Line forming with higher build speed and suitable binder content means excellent properties of sand mould and castings as well, bringing obvious implication for moulds industries and manufacturing industry.

Originality/value

This new method could increase build speed and meanwhile guarantee binder content. Thus, its application prospect is promising.

Details

Rapid Prototyping Journal, vol. 25 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 May 2023

Aniela Kusber, Rafał Józef Gaida, Katarzyna Dziubek and Marian Wit

This study aims to investigate the influence of commercially available resins in water-based magenta pigment inkjet ink formulations on the properties of ink printability and the…

Abstract

Purpose

This study aims to investigate the influence of commercially available resins in water-based magenta pigment inkjet ink formulations on the properties of ink printability and the characteristics of ink application in food packaging. The impact of the resin on the jettability of the existing printability phase diagrams was also assessed.

Design/methodology/approach

Inks with different resin loadings were tested for selected properties, such as viscosity, particle size and surface tension. Stability was determined using a Turbiscan AGS turbidimeter and LumiFuge photocentrifuge analyzer. The ink layer fastness against abrasion and foodstuffs was evaluated using an Ugra device and according to PN-EN 646, respectively. JetXpert was used to assess Ricoh printhead jetting performance.

Findings

Printability diagrams successfully characterized the jettability of polyurethane inkjet inks on a multi-nozzle printhead and the binder improved droplet formation and printing precision.

Originality/value

Magenta water-based inkjet inks with commercial resins have been developed for printing on paper substrates. To the best of the authors’ knowledge, for the first time, inkjet ink stability was evaluated using the Turbiscan AGS and LumiFuge analyzers, and jettability models were verified using an industrial multi-nozzle printhead.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 July 2020

Gülçin Baysal, Gizem Keleş, Berdan Kalav, F. Seniha Güner and Burçak Karagüzel Kayaoğlu

In this study, it is aimed to synthesize ultraviolet (UV)-curable water-borne polyurethane acrylate (WPUA) binders using different types of polyols (poly (propylene glycol), PPG…

Abstract

Purpose

In this study, it is aimed to synthesize ultraviolet (UV)-curable water-borne polyurethane acrylate (WPUA) binders using different types of polyols (poly (propylene glycol), PPG1000 and PPG2000 and poly (ethylene glycol), PEG1000 and PEG2000) at different molecular weights, DMPA (2,2-bis(hydroxymethyl) propionic acid) at different amounts and isophorone diisocyanate (IPDI) and use for pigment printing on synthetic leather.

Design/methodology/approach

UV-cured films were characterized by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimeter (DSC). The effect of binder structure on printing performance was determined with hardness, crock fastness, abrasion resistance and color measurements.

Findings

The highest abrasion resistance (60,000 cycles) and crock fastness values (dry crock and wet crock: 3/4) were obtained with binder PEG-C synthesized with PEG2000 and lower DMPA amount of 4.89 wt%; however, PEG-C binder showed lower hardness values. Due to lower urethane groups in PEG-C binder, more flexible films were obtained which imparted good adhesion property to printing film. Synthesized binders provided lower crock fastness and abrasion resistance properties than commercial WPUA binder.

Originality/value

Pigmented formulations including UV-curable water-borne synthesized PUA binder were developed and for the first time applied onto synthetic leather using screen printing method. Within this context, a new environmentally friendly printing method was proposed in this study including binder synthesis in the preparation of printing formulations.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 25 September 2009

C.Z. Yan, Y.S. Shi, J.S. Yang and J.H. Liu

The purpose of this paper is to report a new method, the dissolution‐precipitation process, to prepare nylon‐coated metal powders for the indirect selective laser sintering (SLS…

Abstract

Purpose

The purpose of this paper is to report a new method, the dissolution‐precipitation process, to prepare nylon‐coated metal powders for the indirect selective laser sintering (SLS) process.

Design/methodology/approach

The nylon‐12 coated carbon steel powders were prepared by the dissolution‐precipitation process. The powder characteristics are examined by scanning electron microscope (SEM) and laser diffraction particle size analysis. The effect of the applied laser energy density on the three‐point bend strength and dimensional accuracy of the SLS specimens are studied. The influence of nylon‐12 content on the bend strength are also investigated.

Findings

The SEM and laser diffraction particle size analysis results indicate that the steel particles are well coated by nylon‐12 resin. The bend strength of the SLS specimens increases with increasing the applied energy density until it reaches a maximum value, and then further increasing energy density will cause the decrease in the bend strength. The bend strength of the SLS specimens increases with increasing the nylon‐12 content over the investigated range. The dimensional errors in the XY‐and Z‐directions are all increased with the increase in energy density.

Research limitations/implications

This paper only concerns the preparation and SLS of the coated powders. Further investigations are planned into post‐processing, such as binder decomposition and high‐temperature sintering, of the green parts made from the coated powders.

Originality/value

This paper provides a useful method for preparing nylon‐coated metal powders for making metal parts by the indirect SLS process.

Details

Rapid Prototyping Journal, vol. 15 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 November 1973

Peter Kresse

On the basis of earlier studies, an investigation is made into the function of inert and active pigments in anti‐rust paints. Satisfactory explanation of the pigment effect is…

Abstract

On the basis of earlier studies, an investigation is made into the function of inert and active pigments in anti‐rust paints. Satisfactory explanation of the pigment effect is shown to be impossible without due consideration of the surrounding medium and, if necessary, the substrate. The significance of metal soaps is their increase in the mechanical and chemical resistance of the dried film of binder. This, in turn, results in a reduction of water diffusion through the film in the case of a high PVC and, hence, in an increase in the anti‐corrosive effect.

Details

Pigment & Resin Technology, vol. 2 no. 11
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 9 December 2022

Michael Rosenthal, Markus Rüggeberg, Christian Gerber, Lukas Beyrich and Jeremy Faludi

The purpose of this study is to quantify the vertical shrinkage rates and the mechanical strength of three-dimensional (3D) printed parts for a variety of wood-based materials for…

Abstract

Purpose

The purpose of this study is to quantify the vertical shrinkage rates and the mechanical strength of three-dimensional (3D) printed parts for a variety of wood-based materials for liquid deposition modeling.

Design/methodology/approach

The overall hypothesis was that a well-chosen combination of binders, fibers and fillers could reduce shrinkage in the Z dimension and increase compressive and flexural strength (DIN 52185, 52186). To test this assumption, eight sub-hypotheses were formulated. Mixtures of the ingredients were chosen in different ratios to measure the performance of prints. For time efficiency, an iterative heuristic approach was used – not testing all variations of all variables in even increments, but cutting off lines of testing when mixtures were clearly performing poorly.

Findings

The results showed that some mixtures had high dimensional accuracy and strength, while others had neither, and others had one but not the other. Shrinkage of 3D printed objects was mainly caused by water release during drying. An increase of the wood as well as the cement, sand, salt and gypsum content led to reduced vertical shrinkage, which varied between 0 and 23%. Compressive and flexural strength showed mixed trends. An increase in wood and salt content worsened both strength properties. The addition of fibers improved flexural, and the addition of cement improved compression strength. The highest strength values of 14 MPa for compressive and 8 MPa for flexural strength were obtained in the test series with gypsum.

Originality/value

This paper is an important milestone in the development of environmentally friendly materials for additive manufacturing. The potential of many ingredients to improve physical properties could be demonstrated.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 May 2020

Hsing-I. Hsiang, Chih-Cheng Chen, Liang-Fang Fan and Hao-Yin Cheng

The interaction between the silver powder and organic vehicle largely determines the rheological behavior of silver conductive paste. This study aims to prepare silver conductive…

Abstract

Purpose

The interaction between the silver powder and organic vehicle largely determines the rheological behavior of silver conductive paste. This study aims to prepare silver conductive paste with an organic vehicle system consisting of ethyl cellulose (EC) and terpineol/butyl carbitol acetate solvent mixtures. The study also aims to measure the rheological behaviors of the silver conductive pastes with different solvent mixtures, EC molecular weights and silver content, to investigate the interaction among the polymer, solvent and silver powder and determine the main factors affecting the thixotropic index and maximum silver content.

Design/methodology/approach

The rheological behaviors of silver conductive pastes with different solvent mixtures, EC molecular weights and silver content were investigated using viscometer.

Findings

The shear thinning became significant with increasing EC molecular weight. The EC solvation with higher molecular weight in solvent is better than that of EC with lower molecular weight. This leads to a stronger interaction between the silver powder and EC with higher molecular weight and consequently good silver particle dispersion. The relative viscosity of silver conductive paste at 10 s−1 increases significantly with increasing silver content, but the relative viscosity at 100 s−1 is much less sensitive to the silver content. The viscosities at low and high shear rate can be increased by increasing the silver content and EC molecular weight, respectively.

Originality/value

The interaction among the polymer, solvent and silver powder was investigated for the silver paste with high solid content. The main factors affecting the viscosities at high and low shear rates, thixotropic index and maximum silver content were determined.

Details

Circuit World, vol. 47 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Open Access
Article
Publication date: 29 November 2022

David Bricín, Filip Véle, Zdeněk Jansa, Zbyněk Špirit, Jakub Kotous and Dana Kubátová

The purpose of this study is to verify how the carbon doping of the WC-Co cemented carbide (CC) affected their structure before their processing by hot isostatic pressing (HIP…

Abstract

Purpose

The purpose of this study is to verify how the carbon doping of the WC-Co cemented carbide (CC) affected their structure before their processing by hot isostatic pressing (HIP) technology.

Design/methodology/approach

The samples for this experiment were fabricated by selective laser melting technology (SLM) using a YAG fiber laser with a power of P = 40 W and a scanning speed of 83 mm/s. The subsequent carbon doping process was performed in a chamber furnace at 900 0 C for 1, 4 and 12 h. The HIP was performed at 1,390°C and pressures of 40 MPa, 80 MPa and 120 MPa. The changes induced in the structures were evaluated using X-ray diffraction and various microscopic methods.

Findings

X-ray diffraction analysis showed that the structure of the samples after SLM consisted of WC, W2C, Co4W2C and Co phases. As a result of the increase in the carbon content in the structure of the samples, the transition carbide W2C and structural phase Co4W2C decayed. Their decay was manifested by the coarsening of the minor alpha phase (WC), which occurred both during the carburizing process and during the subsequent processing using HIP. In the samples in which the structure was carburized prior to HIP, only the structural phases WC and Co were observed in most cases.

Originality/value

The results confirm that it is possible to increase the homogeneity of the CC structure and thus its applicability in practice by additional carburization of the sample structure with subsequent processing by HIP technology.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 June 1976

J.M. Rackham

Generally the physical properties of the vehicle have a greater influence on the physical nature of a dispersion than those of the pigment, and in practice the choice of binder

Abstract

Generally the physical properties of the vehicle have a greater influence on the physical nature of a dispersion than those of the pigment, and in practice the choice of binder solids and thinning solvent are important.

Details

Pigment & Resin Technology, vol. 5 no. 6
Type: Research Article
ISSN: 0369-9420

Open Access
Article
Publication date: 19 March 2024

Feng Chen, Zhongjin Wang, Dong Zhang and Shuai Zeng

Explore the development trend of chemically-improved soil in railway engineering.

Abstract

Purpose

Explore the development trend of chemically-improved soil in railway engineering.

Design/methodology/approach

In this paper, the technical standards home and abroad were analyzed. Laboratory test, field test and monitoring were carried out.

Findings

The performance design system of the chemically-improved soil should be established.

Originality/value

On the basis of the performance design, the test methods and standards for various properties of chemically-improved soil should be established to evaluate the improvement effect and control the engineering quality.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

1 – 10 of over 3000