Search results

1 – 10 of over 66000
Article
Publication date: 3 May 2023

Jordan Weaver, Alec Schlenoff, David Deisenroth and Shawn Moylan

This paper aims to investigate the influence of nonuniform gas speed across the build area on the melt pool depth during laser powder bed fusion. This study focuses on whether a…

Abstract

Purpose

This paper aims to investigate the influence of nonuniform gas speed across the build area on the melt pool depth during laser powder bed fusion. This study focuses on whether a nonuniform gas speed is a source of process variation within an individual build.

Design/methodology/approach

Parts with many single-track laser scans were printed and characterized in different locations across the build area coupled with corresponding gas speed profile measurements. Cross-sectional melt pool depth, width and area are compared against build location/gas speed profiles, scan direction and laser scan speed.

Findings

This study shows that the melt pool depth of single-track laser scans produced on parts are highly variable. Despite this, trends were found showing a reduction in melt pool depth for slow laser scan speeds on the build platform near the inlet nozzle and when the laser scans are parallel to the gas flow direction.

Originality/value

A unique data set of single-track laser scan cross-sectional melt pool measurements and gas speed measurements was generated to assess process variation associated with nonuniform gas speed. Additionally, a novel sample design was used to increase the number of single-track tests per part, which is widely applicable to studying process variation across the build area.

Details

Rapid Prototyping Journal, vol. 29 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 March 2018

Donghua Zhao, Weizhong Guo, Baibing Zhang and Feng Gao

The purpose of this paper is to review available technologies, analyse their features, propose a new approach of 3D sand mould printing based on line forming, introduce the…

Abstract

Purpose

The purpose of this paper is to review available technologies, analyse their features, propose a new approach of 3D sand mould printing based on line forming, introduce the manufacturing principle and show advantages of this approach, especially for larger parts with large Z steps in the build, such as 2 mm stepwise.

Design/methodology/approach

This paper introduces 3D sand mould printing, compares and analyses technological process and existing fabrication approaches among available technologies first. Then, a new approach of 3D sand mould printing is proposed to improve build speed. In addition, the proposed system will be analysed or benchmarked against existing systems.

Findings

A new approach based on line forming of sand mould printing is put forward by reviewing and analysing available technologies, to improve build speed from the aspect of basic moulding movement instead of optimization of moulding methods and process parameters. The theoretical calculation and analysis shows that build speed can be improved greatly, and it is more suitable for the manufacture of large-scale casting’s sand mould when considering dimensional accuracy and printing error, as well as uniformity of each layer.

Research limitations/implications

The specific implement scheme of line forming and nozzle’s specific structure of this new approach need further study.

Practical implications

Much higher build speed of 3D sand mould printing with new approach brings evident implication for moulds companies and manufacturing industry, having a far-reaching influence on the development of national economy.

Originality/value

This paper reviews available technologies and presents a new approach of 3D sand mould printing for the first time. Analysis of the new approach shows that this new method of sand mould printing can boost build speed greatly. So, its application prospect is great.

Details

Rapid Prototyping Journal, vol. 24 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 January 2024

Abdul Samad Rafique, Adnan Munir, Numan Ghazali, Muhammad Naveed Ahsan and Aqeel Ahsan Khurram

The purpose of this study was to develop a correlation between the properties of acrylonitrile butadiene styrene parts 3D printed by material extrusion (MEX) process.

Abstract

Purpose

The purpose of this study was to develop a correlation between the properties of acrylonitrile butadiene styrene parts 3D printed by material extrusion (MEX) process.

Design/methodology/approach

The two MEX parameters and their values have been selected by design of experiment method. Three properties of MEX parts, i.e. strength (tensile and three-point bending), surface roughness and the dimensional accuracy, are studied at different build speeds (35 mm/s, 45 mm/s and 55 mm/s) and the layer heights (0.06 mm, 0.10 mm and 0.15 mm).

Findings

The results show that tensile strength and three-point bending strength both increase with the decrease in build speed and the layer height. The artifact selected for dimensional accuracy test shows higher accuracy of the features when 3D printed with 0.06 mm layer height at 35 mm/s build speed as compared to those of higher layer heights and build speeds. The optical images of the 3D-printed specimen reveal that lower build speed and the layer height promote higher inter-layer diffusion that has the effect of strong bonding between the layers and, as a result, higher strength of the specimen. The surface roughness values also have direct relation with the build speed and the layer height.

Originality/value

The whole experiments demonstrate that the part quality, surface roughness and the mechanical strength are correlated and depend on the build speed and the layer height.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Abstract

Purpose

The purpose of this study is to analyse the problem of high binder content in sand mould and to solve it. Meanwhile, to increase build speed, especially for heavy casting’s sand mould with a high value in layer height, such as 2 mm in construction instead of the industry standard of 0.3 mm, line forming for three-dimensional (3D) sand mould printing is researched.

Design/methodology/approach

Brief introduction of 3D sand mould printing and key issues are given first. Then, this paper quantitatively analyses binder content in sand mould. Finally, to acquire sand mould with appropriate binder content and high build speed, line forming combining traditional furan no-bake sand manufacture technique is researched, as well as relevant feasible schemes and current progress.

Findings

The study shows that compared with traditional technique, binder content in sand mould produced by available 3D printing technique is too high, bad for sand mould’s properties and quality of castings, while line forming brings guaranteed binder content and improved build speed.

Research limitations/implications

More experiments are needed to demonstrate quantitative analysis of binder content and to obtain flowability of moist sand, detailed structure design of nozzle and practical build speed, as well as methods of circulation of materials considering solidification time.

Practical implications

Line forming with higher build speed and suitable binder content means excellent properties of sand mould and castings as well, bringing obvious implication for moulds industries and manufacturing industry.

Originality/value

This new method could increase build speed and meanwhile guarantee binder content. Thus, its application prospect is promising.

Details

Rapid Prototyping Journal, vol. 25 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 January 2007

Christian Stoy, Frank Dreier and Hans‐Rudolf Schalcher

Planning the construction duration is an important consideration in any construction project. Indicators that permit an early forecast of the duration provide the basis for such…

1689

Abstract

Purpose

Planning the construction duration is an important consideration in any construction project. Indicators that permit an early forecast of the duration provide the basis for such planning. To date, such a basis has been lacking in the German‐speaking area. This paper aims to discuss this matter.

Design/methodology/approach

Indicators are identified that enable a forecast of the construction duration. In addition, a simple regression model is provided to assist in selecting construction speed indicators. This empirical analysis relies on the data, collected on a uniform basis, from 115 German residential buildings.

Findings

Project size (measured in m2 gross external floor area) and project standard (measured in € building construction cost/m2 gross external floor area) are found to be significant drivers of construction speed. It appears that project size, in contrast to the project standard, is positively correlated with construction speed.

Originality/value

An expansion of the data pool is required for more extensive study. On the one hand, this means including relevant drivers that have only been insufficiently considered to date, such as project complexity, project environment, management‐related attributes. On the other hand, the data pool must also be expanded to include other types of use.

Details

Engineering, Construction and Architectural Management, vol. 14 no. 1
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 12 March 2018

Che-Chih Tsao, Ho-Hsin Chang, Meng-Hao Liu, Ho-Chia Chen, Yun-Tang Hsu, Pei-Ying Lin, Yih-Lin Chou, Ying-Chieh Chao, Yun-Hui Shen, Cheng-Yi Huang, Kai-Chiang Chan and Yi-Hung Chen

The purpose of this paper is to propose and demonstrate a new additive manufacturing approach that breaks the layer-based point scanning limitations to increase fabrication speed

393

Abstract

Purpose

The purpose of this paper is to propose and demonstrate a new additive manufacturing approach that breaks the layer-based point scanning limitations to increase fabrication speed, obtain better surface finish, achieve material flexibility and reduce equipment costs.

Design/methodology/approach

The freeform additive manufacturing approach conceptually views a 3D article as an assembly of freeform elements distributed spatially following a flexible 3D assembly structure, which conforms to the surface of the article and physically builds the article by sequentially forming the freeform elements by a vari-directional vari-dimensional capable material deposition mechanism. Vari-directional building along tangential directions of part surface gives surface smoothness. Vari-dimensional deposition maximizes material output to increase build rate wherever allowed and minimizes deposition sizes for resolution whenever needed.

Findings

Process steps based on geometric and data processing considerations were described. Dispensing and forming of basic vari-directional and vari-dimensional freeform elements and basic operations of joining them were developed using thermoplastics. Forming of 3D articles at build rates of 2-5 times the fused deposition modeling (FDM) rate was demonstrated and improvement over ten times was shown to be feasible. FDM compatible operations using 0.7 mm wire depositions from a variable exit-dispensing unit were demonstrated. Preliminary tests of a surface finishing process showed a result of 0.8-1.9 um Ra. Initial results of dispensing wax, tin alloy and steel were also shown.

Originality/value

This is the first time that both vari-directional and vari-dimensional material depositions are combined in a new freeform building method, which has potential impact on the FDM and other additive manufacturing methods.

Details

Rapid Prototyping Journal, vol. 24 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 13 October 2023

Hongmei Li, Junling Shi, Xiangdong Li, Junbo Zhang and Yunlong Chen

High-speed maglev technology can address the issues of adhesion, friction, vibration and high-speed current collection in traditional wheel-rail systems, making it an important…

1191

Abstract

Purpose

High-speed maglev technology can address the issues of adhesion, friction, vibration and high-speed current collection in traditional wheel-rail systems, making it an important direction for the future development of high-speed rail technology.

Design/methodology/approach

This paper elaborates on the demand and significance of developing high-speed maglev technology worldwide and examines the current status and technological maturity of several major high-speed maglev systems globally.

Findings

This paper summarizes the challenges in the development of high-speed maglev railways in China. Based on this analysis, it puts forward considerations for future research on high-speed maglev railways.

Originality/value

This paper describes the development status and technical maturity of several major high-speed maglev systems in the world for the first time, summarizes the existing problems in the development of China's high-speed maglev railway and on this basis, puts forward the thinking of the next research of China's high-speed maglev railway.

Details

Railway Sciences, vol. 2 no. 3
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 1 March 1955

H.G.S. Peacock

DURING a test flight on a prototype Javelin aircraft, a flutter incident occurred involving the loss of both elevators. The pilot was fortunately able to continue flying the…

Abstract

DURING a test flight on a prototype Javelin aircraft, a flutter incident occurred involving the loss of both elevators. The pilot was fortunately able to continue flying the aircraft using the tail trimming control and subsequently made a crash landing. At the time of the incident all the recording instruments were running. These included an automatic observer, a chart recorder of control circuit forces and a two‐axis vibrograph which was mounted at the top of the fin. A copy of part of the record from the latter instrument is shown in FIG. 1. The upper stepped line is the timing signal and the lower trace gives the lateral displacement at the top of the fin, the rather spasmodic oscillations corresponding to the fin bending frequency of 4·8 c.p.s. The diverging oscillation shown on the centre trace corresponds to the vertical displacement at the top of the fin. From this and a similar record obtained from the elevator circuit force recorder, it was concluded that the elevators fluttered symmetrically at a frequency between 21 and 22 c.p.s.

Details

Aircraft Engineering and Aerospace Technology, vol. 27 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 18 April 2016

Rebecca Klingvall Ek, Lars-Erik Rännar, Mikael Bäckstöm and Peter Carlsson

The surface roughness of products manufactured using the additive manufacturing (AM) technology of electron beam melting (EBM) has a special characteristic. Different product…

1220

Abstract

Purpose

The surface roughness of products manufactured using the additive manufacturing (AM) technology of electron beam melting (EBM) has a special characteristic. Different product applications can demand rougher or finer surface structure, so the purpose of this study is to investigate the process parameters of EBM to find out how they affect surface roughness.

Design/methodology/approach

EBM uses metal powder to manufacture metal parts. A design of experiment plan was used to describe the effects of the process parameters on the average surface roughness of vertical surfaces.

Findings

The most important electron beam setting for surface roughness, according to this study, is a combination of “speed and current” in the contours. The second most important parameter is “contour offset”. The interaction between the “number of contours” and “contour offset” also appears to be important, as it shows a much higher probability of being active than any other interaction. The results show that the “line offset” is not important when using contours.

Research limitations/implications

This study examined “contour offset”, “number of contours”, “speed in combination with current” and “line offset”, which are process parameters controlling the electron beam.

Practical implications

The surface properties could have an impact on the product’s performance. A reduction in surface processing will not only save time and money but also reduce the environmental impact.

Originality/value

Surface properties are important for many products. New themes containing process parameters have to be developed when introducing new materials to EBM manufacturing. During this process, it is very important to understand how the electron beam affects the melt pool.

Details

Rapid Prototyping Journal, vol. 22 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 January 1990

Peter Arnold

Examines energy usage in buildings. Discusses how simple design canbe used to good effect. Discusses control systems, installation andmaintenance. Stresses that simplicity of…

Abstract

Examines energy usage in buildings. Discusses how simple design can be used to good effect. Discusses control systems, installation and maintenance. Stresses that simplicity of design, installation and maintenance should be considered at the outset. Concludes that consideration of capital cost alone is a mistake.

Details

Property Management, vol. 8 no. 1
Type: Research Article
ISSN: 0263-7472

Keywords

1 – 10 of over 66000