Search results

1 – 10 of 26
Article
Publication date: 30 September 2013

Nataraj Chandrasekharan, Jaehyung Ju and Lonny Thompson

A three-dimensional finite element (FE) model is developed to design a vibrating bimorph piezoelectric cantilever beam with lead zirconate titanate (PZT-5H) for energy harvesting…

Abstract

Purpose

A three-dimensional finite element (FE) model is developed to design a vibrating bimorph piezoelectric cantilever beam with lead zirconate titanate (PZT-5H) for energy harvesting. The paper aims to discuss these issues.

Design/methodology/approach

A parametric study of electric power generated as a function of the dielectric constant, transverse piezoelectric strain constant, length and thickness of the piezoelectric material, is conducted for a time-harmonic surface pressure load. Transversely isotropic elastic and piezoelectric properties are assigned to the bimorph layers with brass chosen as the substrate material in the three-dimensional FE model. Using design of experiments, a study was conducted to determine the sensitivity of power with respect to the geometric and material variables.

Findings

The numerical analysis shows that a uniform decrease in thickness and length coverage of the piezoelectric layers results in a nonlinear reduction in power amplitude, which suggests optimal values. The piezoelectric strain coefficient, d31 and the thickness of PZT-5H, tp, are the most important design parameters to generate high electric energy for bimorph vibration harvesting device.

Originality/value

The work demonstrates that, through a sensitivity analysis, the electro-mechanical piezoelectric coupling coefficient (d31) and the thickness of the piezoelectric strips (tp) are the most important parameters which have a significant effect on power harvested.

Details

Multidiscipline Modeling in Materials and Structures, vol. 9 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 September 2015

Ricardo Garcia, Philippe Combette, Youri Poulin, Alain Foucaran, Jean Podlecki, Saniya Ben Hassen, Marie Angele Grilli, Olivier Hess and François Briant

The purpose of this paper is to report the study of vibration energy harvesting from a data center (DC) mainframe computer to power nodes of a wireless sensors network (WSN are…

Abstract

Purpose

The purpose of this paper is to report the study of vibration energy harvesting from a data center (DC) mainframe computer to power nodes of a wireless sensors network (WSN are used to improve the energy efficiency of a DC).

Design/methodology/approach

The piezoelectric vibration energy harvester (VEH) has been designed using an electromechanical analytical model. The VEH is composed of a three-layer cantilever beam with a tip mass. A vibration map (amplitude and acceleration) is presented and the authors show that the optimum frequency is around 90 Hz with maximum amplitude of 1 μm and maximum acceleration of 0.6 m/s2. Modeling results and experimental measurements using an electromagnetic shaker to apply vibrations concord.

Findings

The VEH delivers a maximum power of 31 μW on a DC mainframe computer and 2.3 mW at 1g on a test rack. It allows us to use a storage capacitance to successfully power a wireless sensor node for measuring temperature. This paper has been carried out in cooperation with IBM Montpellier and within the framework of the RIDER project financed by the French government and the European Union.

Originality/value

A vibration map (amplitude and acceleration) is presented and the authors show that the optimal frequency is around 90 Hz with maximum amplitude of 1 μm and maximum acceleration of 0.6 m/s2. The VEH delivers a maximum power of 31 μW on DC mainframe computer and 2.3 mW at 1 g on test mounted the shaker. It allows us with a storage capacitance to successfully power a wireless sensor node for measuring temperature.

Details

Sensor Review, vol. 35 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 10 April 2017

Lebied Abdelaziz, Necib Brahim and Sahli Mohamed Lakhdar

Safety improvement and cost reduction have a strong influence on the way to achieve maintenance operations of complex structures, in particular in air transportation, in civil…

Abstract

Purpose

Safety improvement and cost reduction have a strong influence on the way to achieve maintenance operations of complex structures, in particular in air transportation, in civil engineering and others. In this case, piezoelectric ceramics such as sensors and actuators have been used. The advantages of piezoelectric materials include high achievable bandwidth, reliability, compactness, lightness and ease of implementation, thus making them well-suited to be used as actuators and sensors in the case of onboard structures. In this context, this study based around the examination of health and deformation of smart structures, taking into consideration the mechanical and piezoelectric behaviour of sensors and actuators, mechanical contact as well as the initial conditions and the imposed boundary conditions. This paper aims to present an approach for modeling of an intelligent structure by the finite element method. This structure is of aluminum type beam with elastic behaviur where piezoelectric rectangular pellets discreetly spread on the surface of the beam are instrumented. The numerical results were computed and compared to the experimental tests available in the literature and the results show the effectiveness of these piezoelectric (PZT) elements, depending on their positions, and to control the deformed structure, good agreement has been found between the experimental data and numerical predictions.

Design/methodology/approach

Numerical modeling by finite elements model for the measurement of the deformation and the change in shape of a clamped-free structure composed of both elastic and piezoelectric materials have been given by using the Ansys® software. The numerical results were valid by comparisons with analytical and experimental results find in the literature.

Findings

The numerical results showing a good correlation and agree very well. It was also concluded that the actuator and the sensor will be better placed at the housing because it is the position or the actuator that has the greatest impact and where the sensor gives the greatest signal. They are said to be co-located as glues one below the other on either side of the beam.

Originality/value

These materials have an inverse piezoelectric effect allowing them to control the form and present any noise or vibration at any time or position on the structure. The study presented in this paper targets the modeling of a PZT beam device for deform generation by transforming electrical energy into usable load. In this paper, a unimorph piezoelectric cantilever with traditional geometry is investigated for micromanipulation by using the software Ansys®.

Details

World Journal of Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 23 February 2018

Kirubaveni Savarimuthu, Radha Sankararajan, Gulam Nabi Alsath M. and Ani Melfa Roji M.

This paper aims to present the design of a cantilever beam with various kinds of geometries for application in energy harvesting devices with a view to enhance the harvested…

Abstract

Purpose

This paper aims to present the design of a cantilever beam with various kinds of geometries for application in energy harvesting devices with a view to enhance the harvested power. The cantilever beams in rectangular, triangular and trapezoidal geometries are simulated, designed and evaluated experimentally. A power conditioning circuit is designed and fabricated for rectification and regulation.

Design/methodology/approach

The analytical model based on Euler–Bernoulli beam theory is analyzed for various cantilever geometries. The aluminum beam with Lead Zirconate Titanate (PZT) 5H strip is used for performing frequency, displacement, strain distribution, stress and potential analysis. A comparative analysis is done based on the estimated performance of the cantilevers with different topologies of 4,500 mm3 volume.

Findings

The analysis shows the trapezoidal cantilever yielding a maximum voltage of 66.13 V at 30 Hz. It exhibits maximum power density of 171.29 W/mm3 at optimal resistive load of 330 kΩ. The generated power of 770.8 µW is used to power up a C-mote wireless sensor network.

Originality/value

This study provides a complete structural analysis and implementation of the cantilever for energy harvesting application, integration of power conditioning circuit with the energy harvester and evaluation of the designed cantilevers under various performance metrics.

Details

Circuit World, vol. 44 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 4 August 2014

Arkadiusz Dabrowski, Karl Elkjaer, Louise Borregaard, Tomasz Zawada and Leszek Golonka

The purpose of this paper is to develop the device made of low temperature co-fired ceramics (LTCC) and lead zirconate titanate (PZT) by co-firing both materials. In the paper…

Abstract

Purpose

The purpose of this paper is to develop the device made of low temperature co-fired ceramics (LTCC) and lead zirconate titanate (PZT) by co-firing both materials. In the paper, the technology and properties of a miniature uniaxial ceramic accelerometer are presented.

Design/methodology/approach

Finite element method (FEM) is applied to predict properties of the sensor vs main dimensions of the sensor. The LTCC process is applied during manufacturing of the device. All the advantages of the technology are taken into account during designing three-dimensional structure of the sensor. The sensitivity and resonant frequency of the accelerometer are measured. Real material parameters of PZT are estimated according to measurement results and FEM simulations.

Findings

The ceramic sensor integrated with SMD package with outer dimensions of 5 × 5 × 5 mm3 is manufactured. The accelerometer exhibits sensitivity of 0.75 pC/g measured at 100 Hz. The resonant frequency is equal to about 2 kHz. Useful frequency range is limited by 3 dB sensitivity change at about 1 kHz.

Research limitations/implications

Sensitivity of the device is limited by interaction between LTCC and PZT materials during co-firing process. The estimated d parameters are ten times worse comparing to bulk Pz27 material. Further research on materials compatibility should be carried out.

Practical implications

The sensor can be easily integrated into various devices made of standard electronic printed circuit boards (PCBs). Applied method of direct integration of piezoelectric transducers with LTCC material enables manufacturing of complex ceramic systems with built-in accelerometer in the substrate.

Originality/value

The accelerometer is a sensor and a package simultaneously. The miniature ceramic device is compatible with surface mounting technology; hence, it can be used directly on PCBs for vibration monitoring inside electronic devices and systems.

Details

Microelectronics International, vol. 31 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 7 November 2019

Mohammad Yaghoub Abdollahzadeh Jamalabadi

This paper aims to investigate the use of a piezo fan in an enclosure on wall heat transfer and thermal boundary layer profile in constant wall temperature situation.

Abstract

Purpose

This paper aims to investigate the use of a piezo fan in an enclosure on wall heat transfer and thermal boundary layer profile in constant wall temperature situation.

Design/methodology/approach

The governing partial differential equations of mass, momentum and energy in addition to boundary conditions are solved by lattice Boltzmann method. The problem is solved numerically using D2Q9 population's model and Bhatnagar–Gross–Krook collision model with a code written in MATLAB.

Findings

The effects of Prandtl number (Pr) and the frequency of piezo fan vibrations are critically investigated on the hydrothermal characteristics of the square cavity. The mesh independency study and the validation of the proposed model are accomplished with numerical results of Ghia et al. (1982) and analytical solution of pure conduction very good agreement is found between present results and benchmark findings. Generally, with increasing beam frequency, the heat removal from heat source increased. It is found that, for all Prandtl numbers, wall Nusselt number will increase with the increase of the beam frequency. This enhancement is more intense in higher Prandtl number.

Originality/value

Based on these results, the use of piezo fan in an enclosure can be classified as standalone as well as heat sink integrated cooling solution.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 2004

Pierre De Lit, Joël Agnus, Cédric Clévy and Nicolas Chaillet

This paper presents a cheap and easy‐to‐produce microprehensile microrobot on chip (MMOC). This four‐degree‐of‐freedom (DOFs) microprehensor is able to grip, hold and release…

Abstract

This paper presents a cheap and easy‐to‐produce microprehensile microrobot on chip (MMOC). This four‐degree‐of‐freedom (DOFs) microprehensor is able to grip, hold and release submillimetric‐sized objects. The research conducted relied heavily on the design of a simple and efficient monolithic piezoelectric two‐DOF actuator, requiring no further motion transformation system and asking for no supplementary guiding system. The integration of all these functions in a single part eliminates nearly all assembly concerns. Each finger of the gripper is an actuator, called a duo‐bimorph, which provides higher deflections than piezoelectric tubes. The paper presents the developed MMOC prototype, comments its performances and details the functioning of the duo‐bimorph.

Details

Assembly Automation, vol. 24 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Content available
Article
Publication date: 1 March 2002

Jon Rigelsford

84

Abstract

Details

Assembly Automation, vol. 22 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 12 July 2013

Sascha Duczek and Ulrich Gabbert

Piezoelectric actuators and sensors are an invaluable part of lightweight designs for several reasons. They can either be used in noise cancellation devices as thin‐walled…

Abstract

Purpose

Piezoelectric actuators and sensors are an invaluable part of lightweight designs for several reasons. They can either be used in noise cancellation devices as thin‐walled structures are prone to acoustic emissions, or in shape control approaches to suppress unwanted vibrations. Also in Lamb wave based health monitoring systems piezoelectric patches are applied to excite and to receive ultrasonic waves. The purpose of this paper is to develop a higher order finite element with piezoelectric capabilities in order to simulate smart structures efficiently.

Design/methodology/approach

In the paper the development of a new fully three‐dimensional piezoelectric hexahedral finite element based on the p‐version of the finite element method (FEM) is presented. Hierarchic Legendre polynomials in combination with an anisotropic ansatz space are utilized to derive an electro‐mechanically coupled element. This results in a reduced numerical effort. The suitability of the proposed element is demonstrated using various static and dynamic test examples.

Findings

In the current contribution it is shown that higher order coupled‐field finite elements hold several advantages for smart structure applications. All numerical examples have been found to agree well with previously published results. Furthermore, it is demonstrated that accurate results can be obtained with far fewer degrees of freedom compared to conventional low order finite element approaches. Thus, the proposed finite element can lead to a significant reduction in the overall numerical costs.

Originality/value

To the best of the author's knowledge, no piezoelectric finite element based on the hierarchical‐finite‐element‐method has yet been published in the literature. Thus, the proposed finite element is a step towards a holistic numerical treatment of structural health monitoring (SHM) related problems using p‐version finite elements.

Details

Engineering Computations, vol. 30 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 January 2017

Peyman Rafiee, Golta Khatibi and Michael Zehetbauer

The purpose of this paper is to provide an overview of the major reliability issues of microelectromechanical systems (MEMS) under mechanical and environmental loading conditions…

1032

Abstract

Purpose

The purpose of this paper is to provide an overview of the major reliability issues of microelectromechanical systems (MEMS) under mechanical and environmental loading conditions. Furthermore, a comprehensive study on the nonlinear behavior of silicon MEMS devices is presented and different aspects of this phenomenon are discussed.

Design/methodology/approach

Regarding the reliability investigations, the most important failure aspects affecting the proper operation of the MEMS components with focus on those caused by environmental and mechanical loads are reviewed. These studies include failures due to fatigue loads, mechanical vibration, mechanical shock, humidity, temperature and particulate contamination. In addition, the influence of squeeze film air damping on the dynamic response of MEMS devices is briefly discussed. A further subject of this paper is discussion of studies on the nonlinearity of silicon MEMS. For this purpose, after a description of the basic principles of nonlinearity, the consequences of nonlinear phenomena such as frequency shift, hysteresis and harmonic generation and their effects on the device performance are reviewed. Special attention is paid to the mode coupling effect between the resonant modes as a result of energy transfer because of the nonlinearity of silicon. For a better understanding of these effects, the nonlinear behavior of silicon is demonstrated by using the example of Si cantilever beams.

Findings

It is shown that environmental and mechanical loads can influence on proper operation of the MEMS components and lead to early fracture. In addition, it is demonstrated that nonlinearity modifies dynamic response and leads to new phenomena such as frequency shift and mode coupling. Finally, some ideas are given as possible future areas of research works.

Originality/value

This is a review paper and aimed to review the latest manuscripts published in the field of reliability and nonlinearity of the MEMS structures.

Details

Microelectronics International, vol. 34 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 10 of 26