Search results

1 – 10 of over 1000
Article
Publication date: 30 September 2021

Shuai Wang, Fei Zhao, Bo Zhou and Shifeng Xue

A distributed piezoelectric actuator (DPA) improving the deformation performance of wing is proposed. As the power source of morphing wing, the factors affecting the…

100

Abstract

Purpose

A distributed piezoelectric actuator (DPA) improving the deformation performance of wing is proposed. As the power source of morphing wing, the factors affecting the driving performance of DPA were studied.

Design/methodology/approach

The DPA is composed of a substrate beam and a certain number of piezoelectric patches pasted on its upper and lower ends. Utilizing the inverse piezoelectric effect of piezoelectric material, the DPA transfers displacement to the wing skin to change its shape. According to the finite element method and piezoelectric constitutive equation, the structure model of DPA was established, and its deformation behavior was analyzed. The accuracy of algorithm was verified by comparison with previous studies.

Findings

The results show that the arrangement way, length and thickness of piezoelectric patches, the substrate beam thickness and the applied voltage are the important factors to determine the driving performance of DPA.

Research limitations/implications

This paper can provide theoretical basis and calculation method for the design and application of distributed piezoelectric actuator and morphing wing.

Originality/value

A novel morphing wing drove by DPA is proposed to improve environmental adaptability of aircraft. As the power source achieving wing deformation, the DPA model is established by FEM. Then the factors affecting the driving performance are analyzed. The authors find the centrosymmetric arrangement way of piezoelectric patches is superior to the axisymmetric arrangement, and distribution center of the piezoelectric patches determines the driving performance.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 September 2022

Chenyang Mao, Bo Zhou and Shifeng Xue

Piezoelectric materials are widely used as actuators, due to the advantages of quick response, high sensitivity and linear strain-electric field relationship. The previous…

Abstract

Purpose

Piezoelectric materials are widely used as actuators, due to the advantages of quick response, high sensitivity and linear strain-electric field relationship. The previous work on the piezoelectric material plate structures is not enough; however, such structures play a very important role in the practical design. In this paper, the actuation performance of piezoelectric laminated plate actuator (PLPA) is analyzed based on Galerkin method to parametric study the shape control.

Design/methodology/approach

In this paper, the actuation performance of PLPA is analyzed based on Galerkin method to parametric study the shape control. The stress components of the matrix plate are formulated based on electro-mechanical coupling theory and Kirchhoff's classical laminated plate theory. The effectiveness of the developed method is validated by the comparison with finite element method.

Findings

The actuation performance of PLPA and its influencing factors are numerically analyzed through the developed method. The deflection of PLPA is reasonably increased by optimizing the electric fields, the piezoelectric patch and the matrix plate.

Originality/value

The Galerkin method can be used for engineering applications more easily, and it does not require to rebuild the calculation model as finite element method during the calculation and analysis of PLPA. This paper is a valuable reference for the design and analysis of PLPAs.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 January 2022

Xiang Li, Keyi Wang, Yan Lin Wang and Kui Cheng Wang

Plantar force is the interface pressure existing between the foot plantar surface and the shoe sole during static or dynamic gait. Plantar force derived from gait and…

Abstract

Purpose

Plantar force is the interface pressure existing between the foot plantar surface and the shoe sole during static or dynamic gait. Plantar force derived from gait and posture plays a critical role for rehabilitation, footwear design, clinical diagnostics and sports activities, and so on. This paper aims to review plantar force measurement technologies based on piezoelectric materials, which can make the reader understand preliminary works systematically and provide convenience for researchers to further study.

Design/methodology/approach

The review introduces working principle of piezoelectric sensor, structures and hardware design of plantar force measurement systems based on piezoelectric materials. The structures of sensors in plantar force measurement systems can be divided into four kinds, including monolayered sensor, multilayered sensor, tri-axial sensor and other sensor. The previous studies about plantar force measurement system based on piezoelectric technology are reviewed in detail, and their characteristics and performances are compared.

Findings

A good deal of measurement technologies have been studied by researchers to detect and analyze the plantar force. Among these measurement technologies, taking advantage of easy fabrication and high sensitivity, piezoelectric sensor is an ideal candidate sensing element. However, the number and arrangement of the sensors will influence the characteristics and performances of plantar force measurement systems. Therefore, it is necessary to further study plantar force measurement system for better performances.

Originality/value

So far, many plantar force measurement systems have been proposed, and several reviews already introduced plantar force measurement systems in the aspect of types of pressure sensors, experimental setups for foot pressure measurement analysis and the technologies used in plantar shear stress measurements. However, this paper reviews plantar force measurement systems based on piezoelectric materials. The structures of piezoelectric sensors in the measurement systems are discussed. Hardware design applied to measurement system is summarized. Moreover, the main point of further study is presented in this paper.

Article
Publication date: 9 July 2020

Ritesh Kumar, Himanshu Pathak, Akhilendra Singh and Mayank Tiwari

The purpose of this paper is to analyze the repair of a straight and angular crack in the structure using a piezoelectric material under thermo-mechanical loading by the…

Abstract

Purpose

The purpose of this paper is to analyze the repair of a straight and angular crack in the structure using a piezoelectric material under thermo-mechanical loading by the extended finite element method (XFEM) approach. This provides a general and simple solution for the modeling of crack in the structure to analyze the repair.

Design/methodology/approach

The extended finite element method is used to model crack geometry. The crack surface is modeled by Heaviside enrichment function while the crack front is modeled by branch enrichment functions.

Findings

The effectiveness of the repair is measured in terms of stress intensity factor and J-integral. The critical voltage at which patch repair is most effective is evaluated and presented. Optimal patch shape, location of patch, adhesive thickness and adhesive modulus are obtained for effective repair under thermo-mechanical loading environment.

Originality/value

The presented numerical modeling and simulation by the XFEM approach are of great benefit to analyze crack repair in two-dimensional and three-dimensional structures using piezoelectric patch material under thermo-mechanical loading.

Details

Engineering Computations, vol. 38 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 August 2017

Abhishek Kumar Singh, Santan Kumar, Dharmender and Shruti Mahto

The purpose of this paper is to theoretically analyze the propagation of Love-type wave in an irregular piezoelectric layer superimposed on an isotropic elastic substrate.

Abstract

Purpose

The purpose of this paper is to theoretically analyze the propagation of Love-type wave in an irregular piezoelectric layer superimposed on an isotropic elastic substrate.

Design/methodology/approach

The perturbation technique and Fourier transform have been applied for the solution procedure of the problem. The closed-form expressions of the dispersion relation have been analytically established considering different type of irregularities, namely, rectangular and parabolic for both the cases of electrically open and short conditions.

Findings

The study reveals that the phase velocity of Love-type wave is prominently influenced by wave number, size of irregularity, piezoelectric constant and dielectric constant of an irregular piezoelectric layer. Numerical simulation and graphical illustrations have been effectuated to depict the pronounced impact of aforementioned affecting parameters on the phase velocity of Love-type wave. The major highlight of the paper is the comparative study carried out for rectangular irregularity and parabolic irregularity in both electrically open and short conditions. Classical Love wave equation has been recovered for both the electrical conditions as the limiting case when both media are elastic and interface between them is regular.

Practical implications

The consequences of the study can be utilized in the design of surface acoustic wave devices to enhance their efficiency, as the material properties and the type of irregularities present in the piezoelectric layer enable Love-type wave to propagate along the surface of the layer promoting the confinement of wave for a longer duration.

Originality/value

Up to now, none of the authors have yet studied the propagation of Love waves in a piezoelectric layer overlying an isotropic substrate involving both parabolic and rectangular irregularities. Further, the comparative study of rectangular irregularity and parabolic irregularity for both the cases of electrically open and short conditions elucidating the latent characteristics is among the major highlights and reflects the novelty of the present study.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 November 2014

Palaniyandi Ponnusamy

The purpose of this paper is to study the problem of wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal…

Abstract

Purpose

The purpose of this paper is to study the problem of wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal (triangle, square, pentagon and hexagon) cross-section immersed in fluid is using Fourier expansion collocation method, with in the frame work of linearized, three-dimensional theory of thermo-piezoelectricity.

Design/methodology/approach

A mathematical model is developed to study the wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal cross-sections immersed in fluid is studied using the three-dimensional theory of elasticity. Three displacement potential functions are introduced, to uncouple the equations of motion and the heat and electric conductions. The frequency equations are obtained for longitudinal and flexural (symmetric and antisymmetric) modes of vibration and are studied numerically for triangular, square, pentagonal and hexagonal cross-sectional bar immersed in fluid. Since the boundary is irregular in shape; it is difficult to satisfy the boundary conditions along the curved surface of the polygonal bar directly. Hence, the Fourier expansion collocation method is applied along the boundary to satisfy the boundary conditions. The roots of the frequency equations are obtained by using the secant method, applicable for complex roots.

Findings

From the literature survey, it is clear that the free vibration of an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal cross-sectional bar immersed in fluid have not been analyzed by any of the researchers, also the previous investigations in the vibration problems of transversely isotropic thermo-piezoelectric solid bar of circular cross-sections only. So, in this paper, the wave propagation in thermo-piezoelectric cylindrical bar of polygonal cross-sections immersed in fluid are studied using the Fourier expansion collocation method. The computed non-dimensional frequencies are plotted in the form of dispersion curves and its characteristics are discussed, also a comparison is made between non-dimensional wave numbers for longitudinal and flexural modes piezoelectric, thermo-piezoelectric and thermo-piezoelectric polygonal cross-sectional bars immersed in fluid.

Research limitations/implications

Wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal cross-sectional bar immersed in fluid have not been analyzed by any of the researchers, also the previous investigations in the vibration problems of transversely isotropic thermo-piezoelectric solid bar of circular cross-sections only. So, in this paper, the wave propagation in thermo-piezoelectric cylindrical bar of polygonal cross-sections immersed in fluid are studied using the Fourier expansion collocation method. The computed non-dimensional frequencies are plotted in the form of dispersion curves and its characteristics are discussed, also a comparison is made between non-dimensional wave numbers for longitudinal and flexural modes of piezoelectric, thermo-piezoelectric and thermo-piezoelectric polygonal cross-sectional bars immersed in fluid.

Originality/value

The researchers have discussed the wave propagation in thermo-piezoelectric circular cylinders using three-dimensional theory of thermo-piezoelectricity, but, the researchers did not analyzed the wave propagation in an arbitrary/polygonal cross-sectional bar immersed in fluid. So, the author has studied the free vibration analysis of thermo-piezoelectric polygonal (triangle, square, pentagon and hexagon) cross-sectional bar immersed in fluid using three-dimensional theory elasticity. The problem may be extended to any kinds of cross-sections by using the proper geometrical relations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 April 2005

B.L. Wang

Piezoelectric ceramics are often combined with other materials to fabricate composites, which are used for constructions of intelligent systems. This paper is concerned…

Abstract

Piezoelectric ceramics are often combined with other materials to fabricate composites, which are used for constructions of intelligent systems. This paper is concerned with the fracture of a piezoelectric fiber embedded in an elastic matrix of finite radius. The fiber composite medium is subjected to the axially symmetric mechanical and electrical loads. Fourier and Hankel transforms are used to reduce the problem to the solution of a system of integral equations. Numerical solutions for the crack tip fields are obtained for various crack sizes and different piezoelectric fiber volume fractions. Both impermeable and permeable crack‐face electrical boundary conditions are considered. Applicability and effect of the crack‐face electrical boundary conditions are discussed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 1 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 April 2017

Lebied Abdelaziz, Necib Brahim and Sahli Mohamed Lakhdar

Safety improvement and cost reduction have a strong influence on the way to achieve maintenance operations of complex structures, in particular in air transportation, in…

Abstract

Purpose

Safety improvement and cost reduction have a strong influence on the way to achieve maintenance operations of complex structures, in particular in air transportation, in civil engineering and others. In this case, piezoelectric ceramics such as sensors and actuators have been used. The advantages of piezoelectric materials include high achievable bandwidth, reliability, compactness, lightness and ease of implementation, thus making them well-suited to be used as actuators and sensors in the case of onboard structures. In this context, this study based around the examination of health and deformation of smart structures, taking into consideration the mechanical and piezoelectric behaviour of sensors and actuators, mechanical contact as well as the initial conditions and the imposed boundary conditions. This paper aims to present an approach for modeling of an intelligent structure by the finite element method. This structure is of aluminum type beam with elastic behaviur where piezoelectric rectangular pellets discreetly spread on the surface of the beam are instrumented. The numerical results were computed and compared to the experimental tests available in the literature and the results show the effectiveness of these piezoelectric (PZT) elements, depending on their positions, and to control the deformed structure, good agreement has been found between the experimental data and numerical predictions.

Design/methodology/approach

Numerical modeling by finite elements model for the measurement of the deformation and the change in shape of a clamped-free structure composed of both elastic and piezoelectric materials have been given by using the Ansys® software. The numerical results were valid by comparisons with analytical and experimental results find in the literature.

Findings

The numerical results showing a good correlation and agree very well. It was also concluded that the actuator and the sensor will be better placed at the housing because it is the position or the actuator that has the greatest impact and where the sensor gives the greatest signal. They are said to be co-located as glues one below the other on either side of the beam.

Originality/value

These materials have an inverse piezoelectric effect allowing them to control the form and present any noise or vibration at any time or position on the structure. The study presented in this paper targets the modeling of a PZT beam device for deform generation by transforming electrical energy into usable load. In this paper, a unimorph piezoelectric cantilever with traditional geometry is investigated for micromanipulation by using the software Ansys®.

Details

World Journal of Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 June 2008

Y‐J. Lin and Suresh V. Venna

The purpose of this paper is to propose an effective and novel methodology to determine optimal location of piezoelectric transducers for passive vibration control of…

Abstract

Purpose

The purpose of this paper is to propose an effective and novel methodology to determine optimal location of piezoelectric transducers for passive vibration control of geometrically complicated structures and shells with various curvatures. An industry‐standard aircraft leading‐edge structure is considered for the actuator placement analysis and experimental verification.

Design/methodology/approach

The proposed method is based on finite element analysis of the underlying structure having a thin layer of piezoelectric elements covering the entire inner surface with pertinent boundary conditions. All the piezoelectric properties are incorporated into the elements. Specifically, modal piezoelectric analysis is performed to provide computed tomography for the evaluations of the electric potential distributions on these piezoelectric elements attributed by the first bending and torsional modes of structural vibration. Then, the outstanding zone(s) yielding highest amount of electric potentials can be identified as the target location for the best actuator placement.

Findings

Six piezoelectric vibration absorbers are determined to be placed alongside both of the fixed edges. An experimental verification of the aluminum leading edge's vibration suppression using the proposed method is conducted exploiting two resistive shunt circuits for the passive damping. A good agreement is obtained between the analytical and experimental results. In particular, vibration suppression around 30 and 25 per cent and Q‐factor reduction up to 15 and 10 per cent are obtained in the designated bending and torsional modes, respectively. In addition, some amount of damping improvement is observed at higher modes of vibration as well.

Research limitations/implications

The frequency in the proposed approach will be increased slowly and gradually from 0 to 500 Hz. When the frequency matches the natural frequency of the structure, owing to the resonant condition the plate will vibrate heavily. The vibrations of the plate can be observed by connecting a sensor to an oscilloscope. Owing to the use of only one sensor, not all the modes can be detected. Only the first few modes can be picked up by the sensor, because of its location.

Practical implications

This method can also be used in optimizing not only the location but also the size and shape of the passive vibration absorber to attain maximum amount of damping. This can be achieved by simply changing the dimensions and shape of the piezoelectric vibration absorber in the finite element model on an iterative basis to find the configuration that gives maximum electric potential.

Originality/value

The determination of optimal location(s) for piezoelectric transducers is very complicated and difficult if the geometry of structures is curved or irregular. Therefore, it has never been reported in the literature. Here an efficient FEA‐based electric potential tomography method is proposed to identify the optimized locations for the PZT transducers for passive vibration control of geometrically complicated structures, with minimal efforts. In addition, this method will facilitate the determination of electric potentials that would be obtained at all the possible locations for piezoelectric transducers and hence makes it possible to optimize the placement and configurations of the candidate transducers on complex shape structures.

Details

Sensor Review, vol. 28 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 27 April 2020

Chengdong Yuan, Siyang Hu and Tamara Bechtold

Based on the framework of Krylov subspace-based model order reduction (MOR), compact models of the piezoelectric energy harvester devices can be generated. However, the…

Abstract

Purpose

Based on the framework of Krylov subspace-based model order reduction (MOR), compact models of the piezoelectric energy harvester devices can be generated. However, the stability of reduced piezoelectric model often cannot be preserved. In previous research studies, “MOR after Schur,” “Schur after MOR” and “multiphysics structure preserving MOR” methods have proven successful in obtaining stable reduced piezoelectric energy harvester models. Though the stability preservation of “MOR after Schur” and “Schur after MOR” methods has already been mathematically proven, the “multiphysics structure preserving MOR” method was not. This paper aims to provide the missing mathematical proof of “multiphysics structure preserving MOR.”

Design/methodology/approach

Piezoelectric energy harvesters can be represented by system of differential-algebraic equations obtained by the finite element method. According to the block structure of its system matrices, “MOR after Schur” and “Schur after MOR” both perform Schur complement transformations either before or after the MOR process. For the “multiphysics structure preserving MOR” method, the original block structure of the system matrices is preserved during MOR. 

Findings

This contribution shows that, in comparison to “MOR after Schur” and “Schur after MOR” methods, “multiphysics structure preserving MOR” method performs the Schur complement transformation implicitly, and therefore, stabilizes the reduced piezoelectric model.

Originality/value

The stability preservation of the reduced piezoelectric energy harvester model obtained through “multiphysics structure preserving MOR” method is proven mathematically and further validated by numerical experiments on two different piezoelectric energy harvester devices.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 1000