Search results

1 – 10 of 15
Article
Publication date: 12 October 2015

Abhijit Patra, Subhas Ganguly, Partha Protim Chattopadhyay and Shubhabrata Datta

The purpose of this paper is to design and develop precipitation hardened Al-Mg alloy imparting enhanced strength with acceptable ductility through minor addition of Sc and Cr by…

Abstract

Purpose

The purpose of this paper is to design and develop precipitation hardened Al-Mg alloy imparting enhanced strength with acceptable ductility through minor addition of Sc and Cr by using multi-objective genetic algorithm-based searching. In earlier attempts of strengthening aluminum alloys, owing to the formation of Al3Sc and Al7Cr phase, addition of Sc and Cr have yielded attractive precipitation hardening, respectively. Both the Al-Sc and Al-Cr system are quench sensitive due to presence of a sloping solvus in their phase diagrams. It is also known that both the Al3Sc and Al7Cr phases nucleate directly from the supersaturated solid solution without formation of GP-zones or transient phases prior to the formation of the Al3Sc and Al7Cr. Sc also found to have beneficial effect on the corrosion property of such alloys. In view of the above, it is of interest to explore the possibility of enhancing the age hardening effect in Al-Mg alloy by addition of Sc and Cr.

Design/methodology/approach

The paper uses an approach where experimental information of two different alloy systems (namely, Al-Mg-Sc and Al-Cr) has been combined to generate a single database involving the potential features of both the systems with the aim to formulate the suitable artificial neural network (ANN) models for strength and ductility. The models are used as the objective functions for the optimization process. The patterns of the optimized Pareto front are analyzed to recognize the optimal property of the alloy system. The hitherto unexplored Al-Mg-Sc-Cr alloy, designed from the Pareto solutions and suitably modified on the basis of prior knowledge of the system, is then synthesized and characterized.

Findings

The paper has demonstrated the ANN- and genetic algorithm (GA)-based design of a hitherto unexplored alloy by utilizing the existing information concerning the component alloy systems. The paper also established that analyses of the Pareto solutions generated through multi-objective optimization using GA provide an insight of the variation of the parameters at different combination of strength and ductility. It also revealed that the Al-Mg-Sc-Cr alloy has exhibited a two-stage age hardening effect. The first and second stages are due to the precipitation of Al3Sc and Al7Cr phases, respectively.

Research limitations/implications

In the present study the two alloy systems are used in tandem to develop models to describe the properties involving the distinct mechanistic features of phase evolution inherent in both the systems. Though the ANN models having the capability to capture huge non-linearity of a system have been employed to predict the convoluted effects of those characteristics when an alloy containing Mg, Sc and Cr are added simultaneously, but the ANN models predictions can be checked experimentally by the future researchers.

Practical implications

The paper demonstrates the role of scandium and chromium addition on the ageing characteristics of the alloy by analyzing the age hardening behavior of the designed alloy in cast and cold rolled condition clearly.

Originality/value

The approach stated in this paper is a novel one, in the sense that experimental data of two different alloy systems have been clubbed to generate a single database with the aim to formulate the suitable ANN models for strength and ductility.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 24 May 2022

Mingjin Wu, Feng Jiang and Jingyu Jiang

The purpose of this paper is to investigate the effect of Na2SiO3 concentration on the microstructure and corrosive properties of microarc oxidation (MAO) coating on Al-Mg-Sc alloy

99

Abstract

Purpose

The purpose of this paper is to investigate the effect of Na2SiO3 concentration on the microstructure and corrosive properties of microarc oxidation (MAO) coating on Al-Mg-Sc alloy and explore microstructure evolution rule of Al substrate in the contact area.

Design/methodology/approach

The Na2SiO3 concentration in electrolytes influenced the microstructure and corrosion behavior of MAO coatings. Instantaneous high temperature and high pressure due to microarc discharge caused annealing treatment. The corrosive behavior of the MAO coating was featured with polarization curves and electrochemical impedance spectrum in 3.5 Wt.% NaCl solution.

Findings

The substrate in the contact area existed the instantaneous annealing treatment, which caused obvious recrystallization. The coating prepared in electrolyte containing 7 g/L Na2SiO3 exhibited the highest protective properties in 3.5 Wt.% NaCl solution.

Originality/value

MAO treatment could increase the corrosion resistance by producing a protective layer on the Al-Mg-Sc alloy surface at a suitable Na2SiO3 concentration and microstructure evolution rule of Al substrate in the contact area was obtained.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 August 2019

G. Yoganjaneyulu, V.V. Ravikumar and C. Sathiya Narayanan

The purpose of this paper is to investigate the strain distribution, stress-based fracture limit and corrosion behaviour of titanium Grade 2 sheets during single point incremental…

Abstract

Purpose

The purpose of this paper is to investigate the strain distribution, stress-based fracture limit and corrosion behaviour of titanium Grade 2 sheets during single point incremental forming (SPIF) process, with various computerized numerical control (CNC) spindle rotational speeds and step depths. The development of corrosion pits in 3.5 (%) NaCl solution has also been studied during the SPIF process.

Design/methodology/approach

A potentiodynamic polarization (PDP) study was performed to investigate the corrosion behaviour of titanium Grade 2 deformed samples, with various spindle rotational speeds in 3.5 (%) NaCl solution. The scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis was carried out to study the fracture behaviour, dislocation densities and corrosion morphology of deformed samples.

Findings

The titanium Grade 2 sheets exhibited better strain distribution, fracture limit and corrosion resistance by increasing the CNC spindle rotational speeds, tool diameters and vertical step depths (VSD). It was recorded that varying the spindle speed affected plastic deformation which in turn affected corrosion rate.

Research limitations/implications

In this study, poor corrosion rate was observed for the as-received condition, and better corrosion rate was achieved at maximum speed of 600 rpm and 0.6 mm of VSD in the deformed sheet. This indicates that corrosion rate improved with increase in the plastic deformation. The EDS analysis report of corroded surface revealed the composition to be mainly of titanium and oxides.

Practical implications

This study discusses the strain distribution, stress-based fracture limit and corrosion behaviour by using titanium Grade 2 sheets during SPIF process.

Social implications

This study is useful in the field of automobile and industrial applications.

Originality/value

With an increase in the spindle rotational speeds and VSD, the titanium Grade 2 sheets showed better strain distribution, fracture limit and corrosion behaviour; the same is evidenced in fracture limit curve and PDP curves.

Article
Publication date: 28 October 2022

Jaydeepsinh M. Ravalji and Shruti J. Raval

Selective laser melting and electron beam melting processes are well-known for the additive manufacturing of metal parts. Metal powder bed fusion (MPBF) is a common term for them…

Abstract

Purpose

Selective laser melting and electron beam melting processes are well-known for the additive manufacturing of metal parts. Metal powder bed fusion (MPBF) is a common term for them. The MPBF process can empower the manufacturing of intricate shapes by reducing the use of special tools, shortening the supply chain and allowing small batches. However, the MPBF process suffers from many quality issues. In literature, several works are recorded for qualification of the MPBF part. The purpose of this study is to recollect those works done for quality control and report their helpful findings for further research and development.

Design/methodology/approach

A systematic literature review was conducted to highlight the major quality issues in the MPBF process and its root causes. Further, the works reported in the literature for mitigation of these issues are classified and discussed in five categories: experimental investigation, finite element method-based numerical models, physics-based analytical models, in-situ control using artificial intelligence (AI) and machine learning (ML) methods and statistical approaches. A comparison is also prepared among these strategies based on their suitability and limitations. Additionally, improvements in MPBF printers are pointed out to enhance the part quality.

Findings

Analytical models require less computational time to simulate the MPBF process and need a smaller number of experiments to confirm the results. They can be used as an efficient process parameter planning tool to print metal parts for noncritical applications. The AI-ML based quality control is also suitable for MPBF processes as it can control many processing parameters that may affect the quality of the MPBF part. Moreover, capabilities of MPBF printers like thinner layer thickness, smaller beam diameter, multiple lasers and high build temperature range can help in quality control.

Research limitations/implications

This study converts the piecemeal data on MPBF part qualification methods into interesting information and presents it in tabular form under each strategy. This tabular information provides the basis for further quality improvement efforts in the MPBF process.

Originality/value

This study references researchers and practitioners on recent quality control efforts and their significant findings for a better quality of MPBF part.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 July 2023

Mas Irfan P. Hidayat, Azzah D. Pramata and Prima P. Airlangga

This study presents finite element (FE) and generalized regression neural network (GRNN) approaches for modeling multiple crack growth problems and predicting crack-growth…

Abstract

Purpose

This study presents finite element (FE) and generalized regression neural network (GRNN) approaches for modeling multiple crack growth problems and predicting crack-growth directions under the influence of multiple crack parameters.

Design/methodology/approach

To determine the crack-growth direction in aluminum specimens, multiple crack parameters representing some degree of crack propagation complexity, including crack length, inclination angle, offset and distance, were examined. FE method models were developed for multiple crack growth simulations. To capture the complex relationships among multiple crack-growth variables, GRNN models were developed as nonlinear regression models. Six input variables and one output variable comprising 65 training and 20 test datasets were established.

Findings

The FE model could conveniently simulate the crack-growth directions. However, several multiple crack parameters could affect the simulation accuracy. The GRNN offers a reliable method for modeling the growth of multiple cracks. Using 76% of the total dataset, the NN model attained an R2 value of 0.985.

Research limitations/implications

The models are presented for static multiple crack growth problems. No material anisotropy is observed.

Practical implications

In practical crack-growth analyses, the NN approach provides significant benefits and savings.

Originality/value

The proposed GRNN model is simple to develop and accurate. Its performance was superior to that of other NN models. This model is also suitable for modeling multiple crack growths with arbitrary geometries. The proposed GRNN model demonstrates its prediction capability with a simpler learning process, thus producing efficient multiple crack growth predictions and assessments.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 19 January 2024

Zhengwei Song, Zhi-Hui Xie, Lifeng Ding and Shengjian Zhang

This paper aims to comprehensively review the preparation methods of superhydrophobic surfaces (SHPS) for corrosion protection of Mg alloy in recent years.

Abstract

Purpose

This paper aims to comprehensively review the preparation methods of superhydrophobic surfaces (SHPS) for corrosion protection of Mg alloy in recent years.

Design/methodology/approach

The preparation methods, wettability and corrosion resistance of SHPS on Mg alloy in the past three years are systematically described in this paper.

Findings

Two types of SHPS, including single-layer and multilayer coatings for corrosion protection of Mg alloy are summarized. Preparing multilayered coatings with multifunction is the current trend in developing SHPS on Mg alloy.

Originality/value

This paper reviewed the preparation methods and corrosion resistance of SHPS on Mg alloys. It provides a valuable reference for researchers to develop highly durable SHPS with excellent corrosion resistance for Mg alloys.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 March 2020

Vitus Mwinteribo Tabie, Chong Li, Wang Saifu, Jianwei Li and Xiaojing Xu

This paper aims to present a broad review of near-a titanium alloys for high-temperature applications.

1175

Abstract

Purpose

This paper aims to present a broad review of near-a titanium alloys for high-temperature applications.

Design/methodology/approach

Following a brief introduction of titanium (Ti) alloys, this paper considers the near-α group of Ti alloys, which are the most popular high-temperature Ti alloys developed for a high-temperature application, particularly in compressor disc and blades in aero-engines. The paper is relied on literature within the past decade to discuss phase stability and microstructural effect of alloying elements, plastic deformation and reinforcements used in the development of these alloys.

Findings

The near-a Ti alloys show high potential for high-temperature applications, and many researchers have explored the incorporation of TiC, TiB SiC, Y2O3, La2O3 and Al2O3 reinforcements for improved mechanical properties. Rolling, extrusion, forging and some severe plastic deformation (SPD) techniques, as well as heat treatment methods, have also been explored extensively. There is, however, a paucity of information on SiC, Y2O3 and carbon nanotube reinforcements and their combinations for improved mechanical properties. Information on some SPD techniques such as cyclic extrusion compression, multiaxial compression/forging and repeated corrugation and straightening for this class of alloys is also limited.

Originality/value

This paper provides a topical, technical insight into developments in near-a Ti alloys using literature from within the past decade. It also outlines the future developments of this class of Ti alloys.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 February 2024

Xiaowen Chen, Wanlin Xie, Song Tang, Meng Zhang, Hao Song, Qingzheng Ran and Defen Zhang

The purpose of this study is to examine the impact of MoS2 on the microstructure and characteristics of micro-arc oxidized (MAO) ceramic coatings created on ZK60 magnesium alloy

Abstract

Purpose

The purpose of this study is to examine the impact of MoS2 on the microstructure and characteristics of micro-arc oxidized (MAO) ceramic coatings created on ZK60 magnesium alloy through the addition of varying concentrations of MoS2 particles to the electrolyte, aiming to enhance the corrosion resistance of magnesium alloy.

Design/methodology/approach

The surface morphology, roughness and phase composition of the coatings were analyzed using scanning electron microscopy, a hand-held roughness tester and an X-ray diffractometer, respectively, and the corrosion resistance of the MAO coatings prepared by the addition of different contents of MoS2 particles was tested and analyzed using an electrochemical workstation.

Findings

The results demonstrate that MoS2/MgO composite coatings have been successfully prepared on the surface of magnesium alloys through micro-arc oxidation. Furthermore, the corrosion resistance of the ZK60 magnesium alloy prepared with the addition of 1.0 g/L MoS2 was the best compared to the other samples.

Originality/value

MoS2 particles were able to penetrate the coatings successfully during the micro-arc oxidation process, acting as a barrier in the micropores to prevent the corrosion medium from touching the surface, thus improving the corrosion resistance of the sample. The electrochemical workstation was used to study the corrosion resistance of the MoS2/MAO coating on the ZK60 magnesium alloy.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 January 2024

Qiang Sun, Quantong Jiang, Siwei Wu, Chang Liu, Heng Tang, L. Song, Hao Shi, Jizhou Duan and BaoRong Hou

The purpose of this paper is to explore the effect of ZnO on the structure and properties of micro-arc oxidation (MAO) coating on rare earth magnesium alloy under large…

Abstract

Purpose

The purpose of this paper is to explore the effect of ZnO on the structure and properties of micro-arc oxidation (MAO) coating on rare earth magnesium alloy under large concentration gradient.

Design/methodology/approach

The macroscopic and microscopic morphology, thickness, surface roughness, chemical composition and structure of the coating were characterized by different characterization methods. The corrosion resistance of the film was studied by electrochemical and scanning Kelvin probe force microscopy. The results show that the addition of ZnO can significantly improve the compactness and corrosion resistance of the MAO coating, but the high concentration of ZnO will cause microcracks, which will reduce the corrosion resistance to a certain extent.

Findings

When the concentration of zinc oxide is 8 g/L, the compactness and corrosion resistance of the coating are the best, and the thickness of the coating is positively correlated with the concentration of ZnO.

Research limitations/implications

Too high concentration of ZnO reduces the performance of MAO coating.

Practical implications

The MAO coating prepared by adding ZnO has good corrosion resistance. Combined with organic coatings, it can be applied in corrosive marine environments, such as ship parts and hulls. To a certain extent, it can reduce the economic loss caused by corrosion.

Originality/value

The effect of ZnO on the corrosion resistance of MAO coating in electrolyte solution was studied systematically, and the conclusion was new to the common knowledge.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 13 May 2024

Feng Zhou, S. S. Lu, B. Jiang and R.G. Song

This study aims to study the formation mechanism of micro-arc oxidation (MAO) coating on AZ31 magnesium alloy and how the annealing process affects its corrosion resistance.

Abstract

Purpose

This study aims to study the formation mechanism of micro-arc oxidation (MAO) coating on AZ31 magnesium alloy and how the annealing process affects its corrosion resistance.

Design/methodology/approach

This study involved immersion experiments, electrochemical experiments and slow strain rate tensile experiments, along with scanning electron microscopy, optical microscopy observation and X-ray diffraction analysis.

Findings

The findings suggest that annealing treatment can refine the grain size of AZ31 magnesium alloy to an average of 6.9 µm at 300°C. The change in grain size leads to a change in conductivity, which affects the performance of MAO coatings. The MAO coating obtained by annealing the substrate at 300°C has smaller pores and porosity, resulting in better adhesion and wear resistance.

Originality/value

The coating acts as a barrier to prevent corrosive substances from entering the substrate. However, the smaller pores and porosity reduce the channels for the corrosive solution to pass through the coating. When the coating cracks or falls off, the corrosive medium and substrate come into direct contact. Smaller and uniform grains have better corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 15