Search results

1 – 10 of 48
Article
Publication date: 1 March 2023

Yushan Gao, Wei Jiang and Shihui Huo

The fracture mechanism of S-07 steel was investigated by observing the fracture surface of the specimens with scanning electron microscope (SEM). Furthermore, the overall…

Abstract

Purpose

The fracture mechanism of S-07 steel was investigated by observing the fracture surface of the specimens with scanning electron microscope (SEM). Furthermore, the overall elastic–plastic behaviors and the stress state evolution during the loading procedure of all specimens were simulated by FE analysis to obtain the local strain at crack nucleated location and the average triaxiality of each type of specimen.

Design/methodology/approach

Three types of tests under various stress states were performed to study the ductile fracture characteristics of S-07 high strength steel in quasi-static condition.

Findings

Under tensile and torsion loading conditions, S-07 steel exhibits two distinctive rupture mechanisms: the growth and internal necking of voids governs the rupture mechanism in tension dominated loading mode, while the change of void shape and internal shearing in the ligaments between voids dominants for shear conditions.

Originality/value

The failure criterion for S-07 steel considering the influence of the triaxial stress state was established.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 May 2023

Zhuangsu Kang, Zongxing Zhang, Shenyou Song, Qian Cheng, Siyu Tao and Ya Ni

This paper aims to investigate the effect of characteristic parameters of pits on the mechanical properties and fracture model of cable steel wires.

Abstract

Purpose

This paper aims to investigate the effect of characteristic parameters of pits on the mechanical properties and fracture model of cable steel wires.

Design/methodology/approach

The tensile test and finite element analysis of steel wires with corrosion damage were carried out. The stress development of corroded steel wire under corrosion morphology was studied by the 3D reverse reconstruction technology. The internal relationship between the stress triaxiality, equivalent plastic strain and pit depth, depth-width ratio of corroded steel wire was discussed.

Findings

With the increase of corrosion degree, the neck shrinkage phenomenon of steel wire was not significant, and the crack originated near the pit bottom and expanded to the section inside of specimen. The fiber area of corroded steel wire decreased while the radiation area increased, and the ductile fracture gradually changed to brittle fracture. The pit size significantly changed the triaxial degree and distribution of stress and accelerated the initiation and propagation of internal cracks at the neck shrinkage stage.

Originality/value

The proposed fracture model based on the void growth model could accurately simulate the fracture behavior of steel wires with corrosion damage.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 July 2023

Yixing Ding, Yanmin Jia, Jiangyue Li, Huiming Li and Xiaobo Zhang

The purpose of this study is to investigate the effects of stud height, stud diameter, ultimate stress of stud and concrete strength on the static behaviour of studs in push-off…

Abstract

Purpose

The purpose of this study is to investigate the effects of stud height, stud diameter, ultimate stress of stud and concrete strength on the static behaviour of studs in push-off tests based on the ductile fracture theory.

Design/methodology/approach

Push-off tests of headed stud shear connectors with different heights and diameters used in concrete of various strengths were designed and implemented. A finite element model was established based on a ductile fracture criterion of ML15 cold-heading steel with stress triaxiality and Lode angle parameter. Based on the results of the parametric study of the numerical model, equations were proposed to evaluate the effect of stud height hs, stud area As, concrete strength fc and stud ultimate strength fsu used in concrete of various strengths on the static behaviour of studs.

Findings

The typical failure phenomenon observed among the test specimens was the fracture of the shank of studs. The microscopic images of the stud fracture surfaces and the verified finite element model indicate that the studs were fractured as a result of the combined action of tension and shear.

Originality/value

A new method for calculating ultimate load Pu and ultimate slip Su is proposed in this paper. In the method, Pu is linearly related to fsu0.2143, As0.7790, hs0.0974, fc0.2065. Su is linearly related to fsu1.078, As0.4681, hs(−0.3135), fc(−0.3480).

Details

International Journal of Structural Integrity, vol. 14 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 27 April 2023

Wanderson Ferreira dos Santos, Ayrton Ribeiro Ferreira and Sergio Persival Baroncini Proença

The present paper aims to explore a computational homogenisation procedure to investigate the full geometric representation of yield surfaces for isotropic porous ductile media…

Abstract

Purpose

The present paper aims to explore a computational homogenisation procedure to investigate the full geometric representation of yield surfaces for isotropic porous ductile media. The effects of cell morphology and imposed boundary conditions are assessed. The sensitivity of the yield surfaces to the Lode angle is also investigated in detail.

Design/methodology/approach

The microscale of the material is modelled by the concept of Representative Volume Element (RVE) or unit cell, which is numerically simulated through three-dimensional finite element analyses. Numerous loading conditions are considered to create complete yield surfaces encompassing high, intermediate and low triaxialities. The influence of cell morphology on the yield surfaces is assessed considering a spherical cell with spherical void and a cubic RVE with spherical void, both under uniform strain boundary condition. The use of spherical cell is interesting as preferential directions in the effective behaviour are avoided. The periodic boundary condition, which favours strain localization, is imposed on the cubic RVE to compare the results. Small strains are assumed and the cell matrix is considered as a perfect elasto-plastic material following the von Mises yield criterion.

Findings

Different morphologies for the cell imply in different yield conditions for the same load situations. The yield surfaces in correspondence to periodic boundary condition show significant differences compared to those obtained by imposing uniform strain boundary condition. The stress Lode angle has a strong influence on the geometry of the yield surfaces considering low and intermediate triaxialities.

Originality/value

The exhaustive computational study of the effects of cell morphologies and imposed boundary conditions fills a gap in the full representation of the flow surfaces. The homogenisation-based strategy allows us to further investigate the influence of the Lode angle on the yield surfaces.

Details

Engineering Computations, vol. 40 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 August 2023

ShuYu Guo, Lin Fan, Yan He, BoHan Geng, MingQi Chen and Yuhang Wang

This study aims to investigate the effect of microtextured tools on the geometric morphology of serrated chips, and further improve the cutting performance of polycrystalline…

Abstract

Purpose

This study aims to investigate the effect of microtextured tools on the geometric morphology of serrated chips, and further improve the cutting performance of polycrystalline cubic boron nitride (PCBN) tool and extend the tool life and the surface quality of the machined surface.

Design/methodology/approach

A three-dimensional finite element cutting model of hardened steel AISI D2 with microtextured PCBN tools were established using the finite element software Abaqus, and cutting tests were carried out. Furthermore, the stress distribution in the primary deformation zone was investigated based on the triaxiality of stress, and the influence of microtexture on the geometric morphology of serrated chips and crack development was researched.

Findings

The results show that compared with nontexture tools, elliptical pits and wavy grooves microtexture tools have lower serrated degree Gs, higher serrated frequency f per unit length and more miniature serrated step Pc. The serrated phenomenon is intensified because the tensile stress zone of chips generated by nontextured tools is longer than that of elliptic pits and wavy grooves microtexture tools. Simultaneously, the maximum value of triaxiality in the tensile stress zone achieved by nontexture tools is larger than that of the two microtexture tools, and chips obtained by nontextured tools are more susceptible to propagation fractures.

Originality/value

This paper mainly studies the effect of microtexture on chip microgeometry, which is relatively little studied at present. At the same time, this paper has a certain engineering significance for PCBN tool turning hardening steel.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0149/

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 November 2010

F.J.P. Reis, L. Malcher, F.M. Andrade Pires and J.M.A. César de Sá

The purpose of this paper is to perform a numerical assessment of two recently proposed extensions of the Gurson‐Tveegard‐Needleman ductile damage constitutive model under low…

Abstract

Purpose

The purpose of this paper is to perform a numerical assessment of two recently proposed extensions of the Gurson‐Tveegard‐Needleman ductile damage constitutive model under low stress triaxiality.

Design/methodology/approach

One of the most widely used ductile damage models is the so‐called Gurson‐Tveegard‐Needleman model, commonly known as GTN model. The GTN model has embedded into its damage formulation the effects of nucleation, growth and coalescence of micro‐voids. However, the GTN model does not include void distortion and inter‐void linking in the damage evolution. To overcome this limitation, some authors have proposed the introduction of different shear mechanisms based on micromechanical grounds or phenomenological assumptions. Two of these constitutive formulations are reviewed in this contribution, numerically implemented within a quasi‐static finite element framework and their results critically appraised.

Findings

Through the analysis of the evolution of internal variables, such as damage and effective plastic strain, obtained by performing a set of numerical tests using a Butterfly specimen, it is possible to conclude that the extended GTN models are in close agreement with experimental evidence.

Research limitations/implications

Even though the results obtained with the modified GTN models have shown improvements, it can also be observed that both shear mechanisms have inherent limitations in the prediction of the location of fracture onset for some specific stress states.

Originality/value

From the results reported, it is possible to identify some shortcomings in the recently proposed extensions of the GTN model and point out the direction of further improvements.

Details

International Journal of Structural Integrity, vol. 1 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 9 April 2018

S.A. Krishnan, G. Sasikala, A. Moitra, S.K. Albert and A.K. Bhaduri

The purpose of this paper is to present a methodology to assess material damage parameters for ductile crack initiation and growth ahead of a crack/notch tip in high hardening…

Abstract

Purpose

The purpose of this paper is to present a methodology to assess material damage parameters for ductile crack initiation and growth ahead of a crack/notch tip in high hardening steel like AISI type 316L(N) stainless steel.

Design/methodology/approach

Ductile damage parameter and far field J-integral have been obtained from standard FEM analysis for a crack/notch tip undergoing large plastic deformation and resulting in crack initiation/growth. In conjunction with experimental results, the damage variable for low strength and high hardening material has been derived in terms of continuum parameters: equivalent plastic strain (εeq) and stress triaxiality (φ). The material parameters for damage initiation and growth in 316LN SS have been evaluated from tensile and fracture tests. With these material tensile/fracture parameters as input, elastic-plastic eXtended Finite Element Method (X-FEM) simulations were carried out on compact tension (CT) specimen geometry under varying initial stress triaxiality conditions.

Findings

The material parameters for damage initiation and growth have been assessed and calibrated by comparing the X-FEM predicted load-displacement responses with the experimental results. It is observed that the deviations in the predicted load values from the experimental data are within 6 percent for specimens with a/W=0.39, 0.55, 0.64, while for a/W=0.72, it is 17 percent.

Originality/value

The present study is a part of developing methods to obtain calibrated material damage parameters for crack growth simulation of components made of AISI 316L(N) stainless steel. This steel is used for fast breeder reactor-based power plant being built at Kalpakkam, India.

Details

International Journal of Structural Integrity, vol. 9 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 8 August 2016

Miguel Abambres and Mário Rui Arruda

Since the use of advanced finite element analysis (FEA) in the design of steel structures has been increasing its popularity in order to avoid unsafe or highly conservative…

Abstract

Purpose

Since the use of advanced finite element analysis (FEA) in the design of steel structures has been increasing its popularity in order to avoid unsafe or highly conservative designs, a solid know-how in computer-aided design (CAD) and engineering (CAE) codes is necessary. Therefore the purpose of this paper is to provide an extensive review of useful guidelines concerning modelling, simulation and result validation for the accurate performance of those analyses.

Design/methodology/approach

Such guidelines are obtained from international steel design codes like Eurocode 3 and DNV, publications from experienced CAE engineers and renowned FE software companies like Ansys and Altair. Topics like mesh independence, the effect of the load sequence on the load bearing capacity and steel fracture criteria are underlined.

Findings

Since the use of advanced FEA in the design of steel structures is becoming more and more traditional due to the increase of its competitiveness when compared to the use of (very) conservative design rules, a solid know-how in CAD and CAE codes is necessary.

Practical implications

This work will be quite useful for structural steel stress engineers, contributing for a safer use of FEA in research and design.

Originality/value

This work will be quite useful for structural steel stress engineers, contributing for a safer use of FEA in research and design.

Details

International Journal of Structural Integrity, vol. 7 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 29 August 2019

G. Yoganjaneyulu, V.V. Ravikumar and C. Sathiya Narayanan

The purpose of this paper is to investigate the strain distribution, stress-based fracture limit and corrosion behaviour of titanium Grade 2 sheets during single point incremental…

Abstract

Purpose

The purpose of this paper is to investigate the strain distribution, stress-based fracture limit and corrosion behaviour of titanium Grade 2 sheets during single point incremental forming (SPIF) process, with various computerized numerical control (CNC) spindle rotational speeds and step depths. The development of corrosion pits in 3.5 (%) NaCl solution has also been studied during the SPIF process.

Design/methodology/approach

A potentiodynamic polarization (PDP) study was performed to investigate the corrosion behaviour of titanium Grade 2 deformed samples, with various spindle rotational speeds in 3.5 (%) NaCl solution. The scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis was carried out to study the fracture behaviour, dislocation densities and corrosion morphology of deformed samples.

Findings

The titanium Grade 2 sheets exhibited better strain distribution, fracture limit and corrosion resistance by increasing the CNC spindle rotational speeds, tool diameters and vertical step depths (VSD). It was recorded that varying the spindle speed affected plastic deformation which in turn affected corrosion rate.

Research limitations/implications

In this study, poor corrosion rate was observed for the as-received condition, and better corrosion rate was achieved at maximum speed of 600 rpm and 0.6 mm of VSD in the deformed sheet. This indicates that corrosion rate improved with increase in the plastic deformation. The EDS analysis report of corroded surface revealed the composition to be mainly of titanium and oxides.

Practical implications

This study discusses the strain distribution, stress-based fracture limit and corrosion behaviour by using titanium Grade 2 sheets during SPIF process.

Social implications

This study is useful in the field of automobile and industrial applications.

Originality/value

With an increase in the spindle rotational speeds and VSD, the titanium Grade 2 sheets showed better strain distribution, fracture limit and corrosion behaviour; the same is evidenced in fracture limit curve and PDP curves.

Article
Publication date: 20 August 2019

G. Yoganjaneyulu, Y. Phaneendra, V.V. Ravikumar and C. Sathiya Narayanan

The purpose of this paper is to investigate the void coalescence and corrosion behaviour of titanium Grade 4 sheets during single point incremental forming (SPIF) process with…

Abstract

Purpose

The purpose of this paper is to investigate the void coalescence and corrosion behaviour of titanium Grade 4 sheets during single point incremental forming (SPIF) process with various spindle rotational speeds. The development of corrosion pits in 3.5 (%) NaCl solution has also been studied during SPIF process.

Design/methodology/approach

In this current research work, the void coalescence analysis and corrosion behaviour of titanium Grade 4 specimens were studied. A potentio-dynamic polarization (PDP) study was conducted to investigate the corrosion behaviour of titanium Grade 4 processed samples with various spindle speeds in 3.5 (%) NaCl solution. The scanning electron microscope and transmission electron microscope analysis was carried out to study the fracture behaviour and corrosion morphology of processed samples.

Findings

The titanium Grade 4 sheets obtained better formability and corrosion resistance by increasing the CNC spindle rotational speeds. In fact that, the significant plastic deformation affects the corrosion rate with various spindle speeds were recorded.

Originality/value

The spindle rotational speeds and vertical step depths increases then the titanium Grade 4 sheets showed better formability, void coalescence and corrosion behaviour as the same is evidenced in forming limit diagram and PDP curves.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 48