Search results

1 – 10 of 22
Article
Publication date: 26 October 2018

Greta Miezinyte, Jolita Ostrauskaite, Egidija Rainosalo, Edvinas Skliutas and Mangirdas Malinauskas

The purpose of this paper is the design and investigation of novel acrylated epoxidized soybean oil-based photocurable systems as candidate materials for optical 3D printing.

Abstract

Purpose

The purpose of this paper is the design and investigation of novel acrylated epoxidized soybean oil-based photocurable systems as candidate materials for optical 3D printing.

Design/methodology/approach

Aromatic dithiols, benzene-1,3-dithiol or benzene-1,4-dithiol, were used as cross-linking agents of acrylated epoxidized soybean oil in these systems. Kinetics of photocross-linking was investigated by real-time photorheometry using two different photoinitiators, 2, 2-dimethoxy-2-phenylacetophenone or 2-hydroxy-2-methylpropiophenone, in different quantities. The effect of the initial composition on the rate of photocross-linking, mechanical, thermal properties and swelling of obtained polymers was investigated.

Findings

The rate of photocross-linking was higher, more cross-links and shorter polymer chains between cross-linking points of the network were formed when benzene-1,4-dithiol and 2, 2-dimethoxy-2-phenylacetophenone were used in compositions. The higher yield of insoluble fraction, glass transition temperatures and values of compressive modulus were obtained when benzene-1,3-dithiol and 2, 2-dimethoxy-2-phenylacetophenone were used in compositions.

Originality/value

This is the first study of acrylated epoxidized soybean oil-based thiol-ene system by real-time photorheometry. The designed novel photocurable systems based on acrylated epoxidized soybean oil and benzenedithiols are promising renewable photoresins for rapid optical 3D printing on demand.

Details

Rapid Prototyping Journal, vol. 25 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 June 2004

M. Bajpai, V. Shukla, D.K. Singh, M. Singh and R. Shukla

Development of new radiation‐curable materials for the application in radiation curing technology is of significant importance. Most of the commercially available…

927

Abstract

Development of new radiation‐curable materials for the application in radiation curing technology is of significant importance. Most of the commercially available radiation‐curable resins are derived from synthetic raw materials. The synthesis of acrylated, epoxidised soybean oil (ESO) from ESO had been carried out by reacting acrylic acid with the oxirane group in ESO. The acrylated ESO products were characterised using a variety of analytical techniques. Thus, the oxygen value, the iodine value, the acid value and the infrared spectra of the acrylated ESO products were obtained. Pigmented acrylated ESO systems were prepared and found to cure on exposure to UV radiation.

Details

Pigment & Resin Technology, vol. 33 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 November 2017

Emiliana Rose Jusoh Taib, Luqman Chuah Abdullah, Min Min Aung, Mahiran Basri, Mek Zah Salleh, Sariah Saalah, Suhaini Mamat, Ching Yern Chee and Jia Li Wong

This paper aims to demonstrate the synthesis of polyesterification reaction of non-edible jatropha seed oil (JO) and acrylic acid, which leads to the production of acrylated

Abstract

Purpose

This paper aims to demonstrate the synthesis of polyesterification reaction of non-edible jatropha seed oil (JO) and acrylic acid, which leads to the production of acrylated epoxidised-based resin. To understand the physico-chemical characteristics when synthesis the JO-based epoxy acrylate, the effect of temperature on the reaction, concentration of acrylic acid and role of catalyst on reaction time and acid value were studied.

Design/methodology/approach

First, the double bond in JO was functionalised by epoxidation using the solvent-free performic method. The subsequent process was acrylation with acrylic acid using the base catalyst triethylamine and 4-methoxyphenol as an inhibitor respectively. The physico-chemical characteristics during the synthesis of the epoxy acrylate such as acid value was monitored and analysed. The formation of the epoxy and acrylate group was confirmed by a Fourier transform infrared spectroscopy spectra analysis and nuclear magnetic resonance analysis.

Findings

The optimum reaction condition was achieved at a ratio of epoxidised JO to acrylic acid of 1:1.5 and the reaction temperature of 110°C. This was indicated by the acid value reduction from 86 to 15 mg KOH/g sample at 6 hours.

Practical implications

The JO-based epoxy acrylate synthesised has a potential to be used in formulations the prepolymer resin for UV curable coating applications. The JO which is from natural resources and is sustainable raw materials that possible reduce the dependency on petroleum-based coating.

Originality/value

The epoxidised jatropha seed oil epoxy acrylate was synthesised, as a new type of oligomer resin that contains a reactive acrylate group, which can be alternative to petroleum-based coating and can used further in the formulation of the radiation curable coating.

Details

Pigment & Resin Technology, vol. 46 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 November 2019

Aukse Navaruckiene, Sigita Kasetaite and Jolita Ostrauskaite

This study aims to present a design and investigation of novel vanillin-based thiol-ene photocurable systems as candidate materials for optical three-dimensional printing.

Abstract

Purpose

This study aims to present a design and investigation of novel vanillin-based thiol-ene photocurable systems as candidate materials for optical three-dimensional printing.

Design/methodology/approach

Two vanillin acrylates, vanillin dimethacrylate and vanillin diacrylate, were tested in thiol-ene photocurable systems with 1,3-benzenedithiol. The kinetics of photocross-linking was investigated by real-time photorheometry using two photoinitiators, diphenyl (2,4,6-trimethylbenzoyl)phosphine oxide or ethyl (2,4,6-trimethylbenzoyl)phenylphosphinate in different quantities. The dependencies of rheological properties of resins on the used vanillin derivative, photoinitiator, and the presence of a solvent, as well as structure, thermal and mechanical properties of the selected polymers were investigated.

Findings

The most rigid polymers were obtained from vanillin diacrylate-based resins without any solvent. The vanillin diacrylate-based polymer possessed higher values of cross-linking density, the yield of insoluble fraction, thermal stability and better mechanical properties in comparison to the vanillin dimethacrylate-based polymer.

Originality/value

The kinetics of photocross-linking of vanillin-based thiol-ene systems was investigated by real-time photorheometry for the first time. The designed novel photocurable systems based on vanillin acrylates and 1,3-benzenedithiol are promising renewable photoresins for optical three-dimensional printing on demand.

Details

Rapid Prototyping Journal, vol. 26 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 August 2021

Shubham Shankar Mohol and Varun Sharma

Additive manufacturing has rapidly developed in terms of technology and its application in various types of industries. With this rapid development, there has been significant…

Abstract

Purpose

Additive manufacturing has rapidly developed in terms of technology and its application in various types of industries. With this rapid development, there has been significant research in the area of materials. This has led to the invention of Smart Materials (SMs). The 4D printing is basically 3D printing of these SMs. This paper aims to focus on novel materials and their useful application in various industries using the technology of 4D printing.

Design/methodology/approach

Research studies in 4D printing have increased since the time when this idea was first introduced in the year 2013. The present research study will deeply focus on the introduction to 4D printing, types of SMs and its application based on the various types of stimulus. The application of each type of SM has been explained along with its functioning with respect to the stimulus.

Findings

SMs have multiple functional applications pertaining to appropriate industries. The 4D printed parts have a distinctive capability to change its shape and self-assembly to carry out a specific function according to the requirement. Afterward, the fabricated part can recover to its 3D printed “memorized” shape once it is triggered by the stimulus.

Originality/value

The present study highlights the various capabilities of SMs, which is used as a raw material in 4D printing.

Graphical abstract

Details

Rapid Prototyping Journal, vol. 27 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 March 2021

Emrah Uysal, Mustafa Çakir and Bülent Ekici

Traditional nanocomposite production methods such as in situ polymerization, melt blending and solvent technique, have some deficits. Some of these are non-homogeneous particle…

378

Abstract

Purpose

Traditional nanocomposite production methods such as in situ polymerization, melt blending and solvent technique, have some deficits. Some of these are non-homogeneous particle distribution, setup difficulties, time-consuming and costly. On the other hand, three-dimensional printing technology is a quite popular method. Especially, Stereolithography (SLA) printing offers some benefits such as fast printing, easy setup and smooth surface specialties. Furthermore, surface modification of Graphene Oxide (GO) and its effects on polymer nanocomposites are quite important. The purpose of this study is to examine the effect of surface modification of GO nanoparticles on the mechanical properties and morphology of epoxy acrylate (BisGMA/1,6 hexane diol diacrylate) matrix nanocomposites.

Design/methodology/approach

In this study, Ultraviolet (UV) curable end groups of synthesized resin were linked to functional groups of graphene oxide, which are synthesized by the Tour method, which is a kind of modified Hummer method. In addition, synthesized GO nanoparticle’s surfaces were modified by 3-(methacryloyloxy) propyl trimethoxysilane. Significant weight percentages of GO were added into the epoxy acrylate resin. Different Wt.% of modified graphene oxide/acrylate resins was used to print test specimens with SLA type three-dimensional printer.

Findings

Surface modification has a significant effect on tensile strength for graphene oxide nanoparticles contained composites. In addition, a specific trend was not observed for tensile test results of non-modified graphene oxide. The tendency of impact and hardness test finding were similar for both surfaces modified and non-modified nanoparticles. Finally, the distribution of particles was homogeneous.

Originality/value

This paper is unique because of the inclusion of both surface modifications of graphene oxide nanoparticles and SLA production of nanocomposites with its own production of three-dimensional printer and photocurable polymer resin.

Details

Rapid Prototyping Journal, vol. 27 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 August 1983

Americus

The paint industry is not immune to the dual problems of an ever‐decreasing supply of oil and natural gas, coupled with what some would call the predatory objectives of OPEC. The…

Abstract

The paint industry is not immune to the dual problems of an ever‐decreasing supply of oil and natural gas, coupled with what some would call the predatory objectives of OPEC. The paint industry has a need for energy, and this need starts with its raw materials. To be sure, there is today a “glut” of energy. And it is predicted that this glut will exist until the end of 1985. But sooner or later the energy short‐age will be felt, and the paint industry will not be immune.

Details

Pigment & Resin Technology, vol. 12 no. 8
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 1 April 2003

S. Kar and A.K. Banthia

The adhesive and impact properties of cured epoxy resins, modified with amine‐randomised poly(2‐ethylhexyl acrylate) (ARPEHA) liquid rubber, as a function of the concentration of…

1344

Abstract

The adhesive and impact properties of cured epoxy resins, modified with amine‐randomised poly(2‐ethylhexyl acrylate) (ARPEHA) liquid rubber, as a function of the concentration of the liquid rubber, have been investigated. ARPEHA was synthesised by the reaction of the carboxyl‐randomised poly(2‐ethylhexyl acrylate) (CRPEHA) liquid rubber with 4,4′‐diaminodiphenyl sulphone. CRPEHA was synthesised by solution co‐polymerisation of 2‐ethylhexyl acrylate and acrylic acid. ARPEHA modified cured epoxy resins were formed by curing with an ambient temperature‐curing agent, triethylene tetramine. The modified epoxy resins were evaluated with respect to their adhesive and impact properties. The optimum properties were obtained at around 12.5 phr (parts per hundred parts of epoxy resin) of modifier. Analysis of the fracture surface using scanning electron microscopy indicated the presence of two‐phase microstructures.

Details

Pigment & Resin Technology, vol. 32 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 August 2014

Ankita Pritam Praharaj, Dibakar Behera, Tapan Kumar Bastia, Prasanta Rath and Priyabrata Mohanty

– This paper aims to prepare BisGMA (bisphenol-A glycidyldimethacrylate)/jute fibre/fly ash hybrid composites with improved mechanical and corrosive properties.

Abstract

Purpose

This paper aims to prepare BisGMA (bisphenol-A glycidyldimethacrylate)/jute fibre/fly ash hybrid composites with improved mechanical and corrosive properties.

Design/methodology/approach

BisGMA prepolymer was first synthesised using diglycidyl ether of bisphenol-A and methacrylic acid. Then 2-hydroxy ethylacrylate-treated jute fibre and sodium hydroxide-treated fly ash were incorporated in the fabrication of composites using dicumyl peroxide, cobalt naphthenate and N,N-dimethyl aniline as catalyst, accelerator and promoter, respectively. The composition of BisGMA, jute fibre and fly ash was kept constant, whereas treated and untreated jute fibre and fly ash were used alternatively.

Findings

Treatment of both jute and fly ash leads to improved mechanical properties of composites. However, treated fabric plays a dominant role compared to treated fly ash as filler. Among all the composites, the one having both treated jute fibre and treated fly ash is the most suitable composite for structural applications.

Research limitations/implications

The present investigation has come up with a hybrid composite that can be used for a wide range of applications like low-cost housing and structural projects, structural laminates, etc., as it is both corrosion- and moisture-resistant. It is also the most durable from the mechanical point of view. There is also a scope of using other fillers instead of fly ash to study the changes brought about in the mechanical properties.

Originality/value

The above composites have never been fabricated before.

Details

Pigment & Resin Technology, vol. 43 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 May 2020

I.M. Mousaa

In this paper, two promising corrosion inhibitors based on natural and eco-friendly materials such as peanut fatty acids (PFA) were prepared and challenged with a common efficient…

Abstract

Purpose

In this paper, two promising corrosion inhibitors based on natural and eco-friendly materials such as peanut fatty acids (PFA) were prepared and challenged with a common efficient commercial inhibitor. Two amino derivatives based on aliphatic and aromatic compounds such as 2-amino-2-methyl-1-propanol (AMP) and 2-amino-2-phenyl-1-propanol (APP), respectively, were used and reacted with PFA under controlled conditions to produce the corrosion inhibitors. The prepared inhibitors, namely, PFA-AMP (inhІ) and PFA-APP (inhІІ), were confirmed and characterized by Fourier transfer infrared spectroscopy, acid value determination and viscosity measurements.

Design/methodology/approach

First, different coating formulations free from any inhibitors were prepared and irradiated under different doses of electron beam source to select the best dose. Several concentrations of synthesized anticorrosion materials were then added to coating formulations to estimate them as anticorrosion materials for mild steel panels. Then, all formulations were coated and polymerized at a dose of 10 kGy. The corrosion tests, weight loss and water uptake were studied for all films after immersion in 3.5% sodium chloride. Moreover, the chemical and physico-mechanical properties were determined for all films.

Findings

The results exhibited that the different concentrations of two inhibitors did not show any significant change on the different properties of all films, and the best concentration, which gives the better protection for steel panels, was to be 1.0 g for two inhibitors.

Originality/value

It was found that the protection efficiency of the inhІ is better and higher than that of the inhІІ and also of the commercial inhibitor with the following order: inhІ > commercial inhibitor > inhІІ.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 22