Search results

1 – 10 of 129
Article
Publication date: 22 September 2023

Rajesh Kumar Bhushan

The purpose of this paper is to examine the quality of the turned surface. The quality of the surface produced depends on the nature of the chips, which are produced while turning…

Abstract

Purpose

The purpose of this paper is to examine the quality of the turned surface. The quality of the surface produced depends on the nature of the chips, which are produced while turning metal matrix composites. This quality is a function of the machining parameters, tool material, tool configuration and elements of the composites.

Design/methodology/approach

In this study, the turning of AA7075/15 wt.% SiC (particle size 20–40 µm) composites is investigated. Thirty experiments were conducted, and the chip-formation mechanism in turning AA7075/SiCp composites at various combinations of cutting speeds, feed and depth of cuts was studied.

Findings

It is observed from the response surface methodology-based experimentation that in turning of coarser reinforcement (particle size 20–40 µm) composites, total gross fracture occurs. This causes small slices of chips and a higher shear plane angle. The nature of chips produced at various combinations of cutting speeds, feed and depth of cuts is different. The chips generated were segmented, spiral in cylindrical form, connected C type, chips with saw tooth, curled chips, washer C type chips, half-curved segmented chips and small-radii segmented chips.

Originality/value

The novelty of this research is that, so far, very little work has been published on the detailed analysis of chips produced during turning of AA7075/15 wt.% SiC (particle size 20–40 µm) composites.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 April 2019

Isam Tareq Abdullah and Sabah Khammass Hussein

The purpose of this paper is to join a sheet of the AA7075 with the high-density polyethylene (HDPE) by a lap joint using friction spot processing and investigate the temperature…

Abstract

Purpose

The purpose of this paper is to join a sheet of the AA7075 with the high-density polyethylene (HDPE) by a lap joint using friction spot processing and investigate the temperature distribution of joint during this process using the finite element method (FEM).

Design/methodology/approach

A semi-conical hole was manufactured in the AA7075 specimen and a lap joint configuration was prepared with the HDPE specimen. A rotating tool was used to generate the required heat to melt the polymer by the friction with the AA7075 specimen. The applied tool force moved the molten polymer through the hole. Four parameters were used: lower diameter of hole, rotating speed, plunging depth and time. The results of shear test were analyzed using the Taguchi method. A FEM was presented to estimate the temperature distribution of joint during the process.

Findings

All specimens failed by shearing the polymer at the lap joint region without dislocation. The specimens of the smallest diameter exhibited the highest shear strength at the lap joint. The maximum ranges of temperature were recorded at the contact region between the rotating tool and the AA7075 specimen. The tool plunging depth recorded the highest effect on the generated heat compared with the rotating speed and plunging time.

Originality/value

For the first time, the AA7075 sheet was joined with the HDPE sheet by friction spot processing. The temperature distribution of this joint was simulated using the FEM.

Details

International Journal of Structural Integrity, vol. 10 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 16 April 2020

Rajesh Kumar Bhushan

Mechanical properties are highly sensitive to the microstructure, and these are indirectly related to solidification parameters and processing conditions. AA7075 possesses…

Abstract

Purpose

Mechanical properties are highly sensitive to the microstructure, and these are indirectly related to solidification parameters and processing conditions. AA7075 possesses lightweight and excellent properties as structural material which can be optimized with SiCp addition and a good fabrication technique.

Design/methodology/approach

7000 series aluminium alloys exhibit the highest mechanical properties. They are used for high-strength structural applications such as aircraft parts and sporting goods. The desirable properties of these alloys are: low density, high stiffness, specific strength, good wear resistance and creep resistance. The focus of this work is to investigate the microstructure of composites formed by the dispersion of silicon carbide particles (SiC) into AA7075 by stir casting processes. 7075 Al alloy is reinforced with 10 and 15 wt.% SiCp of size 10–20 µm by stir casting process. The composites have been characterized by X-ray diffraction and scanning electron microscopy, differential thermal analysis and electron probe microscopic analysis.

Findings

SiCp distribution and interaction with AA7075 matrix have been studied. AA7075/10 wt.%/SiCp (10–20 µm) and AA7075/15 wt.%/SiCp (10–20 µm) composites microstructure showed excellent SiCp distribution into AA7075 matrix. In addition, no evidence of secondary chemical reactions has been observed in X-ray diffraction and electron probe microscopic analysis.

Originality/value

Little experimental work has been reported so far about effect of addition of 10 and 15 wt.% SiCp of size (10–20 µm) on the microstructure of 7075 Al alloy fabricated by stir casting process. The present investigation has been carried out to study the microstructure and carry out XRD, DTA and EPMA analysis of 7075 Al alloy, 10 and 15 wt.% SiCp of size (10–20 µm) composite and detect the interfacial reactions with the objective to minimize the formation of Al4C3.

Details

International Journal of Structural Integrity, vol. 12 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 May 2020

Suganeswaran Kandasamy, Parameshwaran Rathinasamy, Nithyavathy Nagarajan, Karthik Arumugam, Rajasekar Rathanasamy and Gobinath Velu Kaliyannan

This paper aims to overcome the corrosion in AA7075 by incorporating the dual-reinforcements like Al2O3 and SiC through friction stir processing (FSP). In recent days, an…

Abstract

Purpose

This paper aims to overcome the corrosion in AA7075 by incorporating the dual-reinforcements like Al2O3 and SiC through friction stir processing (FSP). In recent days, an automotive monocoque structure undergoes corrosion because of changes in environmental conditions.

Design/methodology/approach

Surface hybrid composites (SHCs) of AA7075 with different weight ratios of Al2O3 and SiC were fabricated at a rotating speed of 1000 rpm, traveling speed of 56 mm/min and tool tilt angle of 2º with two passes. Surface regions were observed using optical microscopy, and the potentiodynamic corrosion test was performed under a 3.5 per cent NaCl environment at room temperature. Then, the surface morphology analysis of corroded samples and their structural properties were also investigated through scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron dispersive spectroscopy (EDS).

Findings

Through FSP, an improved interface between the reinforced particles and the AA7075 base matrix was observed because of the severe plastic deformation. Potentiodynamic polarization tests confirmed that the AA7075 matrix with a higher concentration of Al2O3 and a lower concentration of SiC (Al2O3 – 75 per cent and SiC – 25 per cent) possesses a lower corrosion rate than other specimens. This result is because of the combined effect of stable passive film formation and the resistance produced by hard SiC particles. In addition, the formation of a stronger interface between the reinforcements and the base matrix impedes the NaCl solution attack. The SEM micrograph depicts the film crystallinity variations with an increase in Al2O3 content. Debonding between the layers was observed on increasing the SiC content in the base matrix. XRD shows the peaks of reinforcing elements that influence the corrosion behavior. These observations suggest that the AA7075 reinforced with a higher concentration of Al2O3 and a lower concentration of SiC through FSP affords a suitable solution for automotive monocoque applications.

Originality/value

The corrosion rate has been identified for AA7075 SHCs with various concentrations of Al2O3 and SiC and has been compared with that of the base metal and the friction stir processed specimen without reinforcement.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 April 2019

Harun Mindivan

This paper aims to investigate the structural, corrosion and the study of tribocorrosion features of the AA7075 aluminum alloy with and without the application of electroless…

Abstract

Purpose

This paper aims to investigate the structural, corrosion and the study of tribocorrosion features of the AA7075 aluminum alloy with and without the application of electroless Ni-P/Ni-B duplex coating with a thickness of approximately 40 microns.

Design/methodology/approach

Surface characterization of the samples was made by structural surveys (light optic microscope, scanning electron microscopic examinations and X-ray diffraction analyses), hardness measurements, corrosion and tribocorrosion tests.

Findings

Results of the experiments showed that upper Ni-B coating deposited on the surface of first Ni-P layer by duplex treatment caused remarkable increment in the hardness, corrosion resistance and tribocorrosion performance as compared to the AA7075 aluminum alloy.

Originality/value

This study can be a practical reference and offers insight into the effects of duplex treating on the increase of hardness, corrosion and tribocorrosion performance.

Details

Industrial Lubrication and Tribology, vol. 71 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 July 2019

Alagarsamy S.V. and Ravichandran M.

Aluminium and its alloys are the most preferred material in aerospace and automotive industries because of their high strength-to-weight ratio. However, these alloys are found to…

Abstract

Purpose

Aluminium and its alloys are the most preferred material in aerospace and automotive industries because of their high strength-to-weight ratio. However, these alloys are found to be low wear resistance. Hence, the incorporation of ceramic particles with the aluminium alloy may be enhanced the mechanical and tribological properties. The purpose of this study is to optimize the specific wear rate and friction coefficient of titanium dioxide (TiO2) reinforced AA7075 matrix composites. The four wear control factors are considered, i.e. reinforcement (Wt.%), applied load (N), sliding velocity (m/s) and sliding distance (m).

Design/methodology/approach

The composites were fabricated through stir casting route with varying weight percentages (0, 5, 10 and 15 Wt.%) of TiO2 particulates. The mechanical properties of the composites were studied. The specific wear rate and friction coefficient of the newly prepared composites was determined by using a pin-on-disc apparatus under dry sliding conditions. Experiments were planned as per Taguchi’s L16 orthogonal design. Signal-to-noise ratio analysis was used to find the optimal combination of parameters.

Findings

The mechanical properties such as yield strength, tensile strength and hardness of the composites significantly improved with the addition of TiO2 particles. The analysis of variance result shows that the applied load and reinforcement Wt.% are the most influencing parameters on specific wear rate and friction coefficient during dry sliding conditions. The scanning electron microscope morphology of the worn surface shows that TiO2 particles protect the matrix from more removal of material at all conditions.

Originality/value

This paper provides a solution for optimal parameters on specific wear rate and friction coefficient of aluminium matrix composites (AMCs) using Taguchi methodology. The obtained results are useful in improving the wear resistance of the AA7075-TiO2 composites.

Details

Industrial Lubrication and Tribology, vol. 71 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 January 2019

Shashikumar N.S., B.J. Gireesha, B. Mahanthesh, Prasannakumara B.C. and Ali J. Chamkha

Outstanding features such as superior electrical conductivity and thermal conductivity of alloy nanoparticles with working fluids make them ideal materials to be used as coolants…

Abstract

Purpose

Outstanding features such as superior electrical conductivity and thermal conductivity of alloy nanoparticles with working fluids make them ideal materials to be used as coolants in microelectromechanical systems (MEMSs). This paper aims to investigate the effects of different alloy nanoparticles such as AA7075 and Ti6Al4V on microchannel flow of magneto-nanoliquids with partial slip and convective boundary conditions. Flow features are explored with the effects of magnetism and nanoparticle shape. Heat transport of fluid includes radiative heat, internal heat source/sink, viscous and Joule heating phenomena.

Design/methodology/approach

Suitable dimensionless variables are used to reduce dimensional governing equations into dimensionless ordinary differential equations. The relevant dimensionless ordinary differential systems are computed numerically by using Runge–Kutta–Fehlberg-based shooting approach. Pertinent results of velocity, temperature, entropy number and Bejan number for assorted values of physical parameters are comprehensively discussed. Also, a closed-form solution is obtained for momentum equation for a particular case. Analytical results agree perfectly with numerical results.

Findings

It is established that the entropy production can be improved with radiative heat, Joule heating, convective heating and viscous dissipation aspects. The entropy production is higher in the case of Ti6Al4V-H2O nanofluid than AA7075-H2O. Further, the inequality Ns(ξ)Sphere > Ns(ξ)Hexahedran > Ns(ξ)Tetrahydran > Ns(ξ)Column > Ns(ξ)Lamina holds true.

Originality/value

Effects of aluminium and titanium alloy nanoparticles in microchannel flows by using viscous dissipation and Joule heating are investigated for the first time. Flow features are explored with the effects of magnetism and nanoparticle shape. The results for different alloy nanoparticles such as AA7075 and Ti6Al4V have been compared.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 April 2018

Reham Reda, Mohamed Saad, Mohamed Zaky Ahmed and Hoda Abd-Elkader

This paper aims to monitor, evaluate and adjust the joint quality of dissimilar friction stir welded AA2024-T3 and AA7075-T6 Al alloys.

166

Abstract

Purpose

This paper aims to monitor, evaluate and adjust the joint quality of dissimilar friction stir welded AA2024-T3 and AA7075-T6 Al alloys.

Design/methodology/approach

Taguchi analysis for design of experiments and ANOVA analysis were applied. Tensile test, visual inspection and macro and microstructure investigations were carried out at each welding condition. In addition, the grain size of stir zone and the value of heat input were measured.

Findings

Using Taguchi analysis, the optimum values of tool rotary speed, welding speed and axial load were 1,200 rpm, 100 mm/min and 1,300 kg, respectively, yielding the maximum tensile strength of the joints of 427 MPa. ANOVA analysis indicated that the most significant parameter on the joint strength is the tool rotary speed, followed by welding speed and axial load, with contributions of 67, 27 and 2 per cent, respectively. Best mixing between Al alloys in the stir zone with no defects was observed at moderate speeds because of proper heat input and grain size, resulting in high strength.

Originality/value

A relation between structure characteristics of the joint, the process parameters and the joint strength was established to control the joint quality.

Details

Journal of Engineering, Design and Technology, vol. 16 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 30 August 2011

Qianchu Liu, Madabhushi Janardhana, Bruce Hinton, Milan Brandt and Khan Sharp

The purpose of this paper is to demonstrate the preliminary work on using laser cladding technology for the restoration of structural integrity.

2314

Abstract

Purpose

The purpose of this paper is to demonstrate the preliminary work on using laser cladding technology for the restoration of structural integrity.

Design/methodology/approach

The primary methodology used in this research is to develop a laser cladding‐based metal deposition technique to articulate restoration of structural geometry affected by corrosion damages. Following from this method, it is planned to undertake further work to use the laser cladding process to restore geometry and the associated static/fatigue strength.

Findings

This work has found that it is possible to use laser cladding as a repair technology to improve structural integrity in aluminium alloy aircraft structures in terms of corrosion reduction and geometrical restoration. Initial results have indicated a reduction of static and fatigue resistance with respect to substrate. But more recent works (yet to be published) have revealed improved fatigue strength as measured in comparison to the substrate structural properties.

Originality/value

The research is based on an acceptable materials processing technique.

Details

International Journal of Structural Integrity, vol. 2 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 20 January 2023

Yuvaraj K.P., Joshua Gnana Sekaran J. and Shanmugam A.

The purpose of this paper is to investigate the impact of ultrasonic vibration (UV) and tool pin profile on mechanical properties and microstructural behaviour of AA7075-T651 and…

Abstract

Purpose

The purpose of this paper is to investigate the impact of ultrasonic vibration (UV) and tool pin profile on mechanical properties and microstructural behaviour of AA7075-T651 and AA6061-T6 joints was analysed.

Design/methodology/approach

The joints were fabricated using three different tool pin profiles such as cylindrical, square and triangle. For each tool pin profile, two different UV powers of 1.5 kW and 2 kW were used.

Findings

On both the advancing and retreating sides of the weld, the thermo-mechanically affected zone has the lowest microhardness. In all joints, the tensile fracture locations match to the minimum hardness values. Field emission scanning electron microscope fractography of tensile tested specimens reveals heterogeneous modes of brittle, shear and ductile fracture. Three-point bending analysis was performed to determine the ductility and soundness of the weld joint. The acoustic softening effect of UV, as well as the static and dynamic ratio of tool pin profile, plays an important role in determining the material flow and mechanical behaviour of the joint.

Practical implications

Dissimilar aluminium joining fascinates many applications like aircraft, aerospace, automobiles, ship building and electronics, where fusion welding is a very intricate process because of the deviation in its physical and chemical properties.

Originality/value

From this study investigation, it is found that the square pin profiled tool with 2 kW UV power produces metallurgical defect-free and mechanically sound weld with maximum tensile strength, hardness and bending load of 297 MPa, 151HV and 3.82 kN, respectively.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 129