Search results

1 – 10 of 41
Article
Publication date: 10 August 2018

Fuliang Ma, Zhixiang Zeng and Yimin Gao

This paper aims to study the tribocorrosion and the surface repassivation behaviors of Monel 400 alloy in artificial seawater.

Abstract

Purpose

This paper aims to study the tribocorrosion and the surface repassivation behaviors of Monel 400 alloy in artificial seawater.

Design/methodology/approach

In this study, the tribocorrosion behavior of Monel 400 alloy was studied under different applied loads in artificial seawater by using a pin-on-disk tribometer equipped with an electrochemical workstation. The applied loads were selected ranging from 50 to 200 N. The surface repassivation behavior of Monel 400 alloy was studied by X-ray photoelectron spectroscopy.

Findings

It was demonstrated that mass loss was determined by the combined effect of mechanical wear and chemical corrosion. The surface repassivation mechanism of the alloy is that layer corrosion product film formed on the surface of Monel 400 alloy, which can protect metal matrix from future corrosion.

Originality/value

This research adds original content in revealing the tribocorrosion and surface repassivation behaviors of Monel 400 alloy under different loads, which offer a theoretical basis for the application under the corrosion and wear environment of Monel 400.

Details

Industrial Lubrication and Tribology, vol. 70 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 February 2014

Chen Jun, Yan Fengyuan and Wang Jianzhang

– The aim of this work is to study the tribocorrosion behaviors of Hastelloy C276 alloy sliding against AISI 316 stainless steel in artificial seawater and distilled water.

Abstract

Purpose

The aim of this work is to study the tribocorrosion behaviors of Hastelloy C276 alloy sliding against AISI 316 stainless steel in artificial seawater and distilled water.

Design/methodology/approach

The electrochemical behaviors of Hastelloy C276 alloy are measured by potentiodynamic polarization method. The tribocorrosion properties are evaluated using an MRH-03 type ring-on-block test rig in artificial seawater with different salinity. The wear loss is determined by the difference of sample weight before and after tribocorrosion tests.

Findings

The results show that the typical passivation behavior is observed for C276 alloy in seawater. The Hastelloy C276 alloy has the maximum corrosion current density in 3 percent seawater, which is the synergism of salt concentration and dissolved oxygen in seawater. Friction coefficients are in general larger in distilled water compared with seawater. The wear loss in seawater is always higher than that in distilled water for both alloys. Seawater could reduce the friction coefficient and the wear resistance.

Originality/value

Many scientists focused on studying the friction behavior of passive metals sliding against alumina or zirconia, which was considered to act as inert antagonist in the experiments. However, there are few papers available on the tribocorrosion properties of passive metals sliding each other in corrosion mediums.

Details

Industrial Lubrication and Tribology, vol. 66 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 August 2021

Peipei Lu, Meiping Wu, Xin Liu, Xiaojin Miao and Weipeng Duan

Ti6Al4V is a widely used metal for biomedical application due to its excellent corrosion resistance, biocompatibility and mechanical strength. However, a coupling reaction…

Abstract

Purpose

Ti6Al4V is a widely used metal for biomedical application due to its excellent corrosion resistance, biocompatibility and mechanical strength. However, a coupling reaction of friction and corrosion is the critical reason for the failure of implants during the long-term service in human body, shortening the life expectancy and clinical efficacy of prosthesis. Hence, this study aims to find a feasible approach to modify the service performances of Ti6Al4V.

Design/methodology/approach

Selective laser melting (SLM), as one of the emerging metal-based additive manufacturing (AM) technologies is capable for fabricating patient-specific personalized customization of artificial prosthesis joints, owing to its high adaptability for complex structures. This study is concerned with the tribocorrosion behavior of SLM fabricated Ti6Al4V substrate enhanced by laser rescanning and graphene oxide (GO) mixing. The tribocorrosion tests were performed on a ball-on-plate configuration under the medium of simulated body fluid (SBF). Moreover, the surface morphologies, microstructures, microhardness and contact angle tests were used to further reveal the in-situ strengthening mechanism of GO/Ti6Al4V nanocomposites.

Findings

The results suggest that the strengthening method of GO mixing and laser rescanning shows its capability to enhance the wear resistance of Ti6Al4V by improving surface morphologies and promoting the generation of hard phases. The wear volume of R-GO/Ti6Al4V is 5.1 × 10−2 mm3, which is 25.0% lower than that of pure SLM-produced Ti6Al4V. Moreover, a wear-accelerated corrosion of the Ti6Al4V occurs in SBF medium, leading to a drop in the open circuit potential (OCP), but R-GO/Ti6Al4V has the lowest tendency to corrosion. Compared to that of pure Ti6Al4V, the microhardness and contact angle of R-GO/Ti6Al4V were increased by 32.89% and 32.60%, respectively.

Originality/value

Previous investigations related to SLM of Ti6Al4V have focused on improving its density, friction and mechanical performances by process optimization or mixing reinforcement phase. The authors innovatively found that the combination of laser rescanning and GO mixing can synergistically enhance the tribocorrosion properties of titanium alloy, which is a feasible way to prolong the service lives of medical implants.

Details

Rapid Prototyping Journal, vol. 28 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 July 2019

Eryong Liu, Yingxin Zhang, Xiang Wang, Zhixiang Zeng, Huiling Du and Hongmei Qin

This paper aims to improve the tribocorrosion properties of 316L, thus WC/Ni60 coated 316L was prepared by thermal spraying technique.

Abstract

Purpose

This paper aims to improve the tribocorrosion properties of 316L, thus WC/Ni60 coated 316L was prepared by thermal spraying technique.

Design/methodology/approach

Composition and microstructure of WC/Ni60 coating was investigated, and tribological properties of 316 L and WC/Ni60 coating were studied under dry sliding, deionized water and artificial seawater.

Findings

The results showed that WC/Ni60 coating was lamellar structure, and the phase composition consisted of γ-Ni solid solution, carbides and borides. Furthermore, the hardness and corrosion resistance of 316 L in static seawater and wear resistance in dry sliding were improved by WC reinforced nickel-based coating. Furthermore, tribocorrosion results demonstrated that wear resistance of WC/Ni60 coating was also significantly better than 316 L, especially for higher load at artificial seawater. The reason can be attributed to the fact that the passive film of WC/Ni60 coating consisted of tungsten carbide, Ni(OH)2 and FeOOH for WC/Ni60 coating and only FeOOH for 316 L.

Originality/value

According to this study, it can be concluded that WC phases acted as a role in resisting the wear damages. Meanwhile, Ni-based materials performed well in corrosion resistance. Thus, the combined-effect Ni-based alloys and WC phases in WC/Ni60 coating showed better tribocorrosion performance than 316 L.

Details

Industrial Lubrication and Tribology, vol. 71 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 April 2019

Harun Mindivan

This paper aims to investigate the structural, corrosion and the study of tribocorrosion features of the AA7075 aluminum alloy with and without the application of…

Abstract

Purpose

This paper aims to investigate the structural, corrosion and the study of tribocorrosion features of the AA7075 aluminum alloy with and without the application of electroless Ni-P/Ni-B duplex coating with a thickness of approximately 40 microns.

Design/methodology/approach

Surface characterization of the samples was made by structural surveys (light optic microscope, scanning electron microscopic examinations and X-ray diffraction analyses), hardness measurements, corrosion and tribocorrosion tests.

Findings

Results of the experiments showed that upper Ni-B coating deposited on the surface of first Ni-P layer by duplex treatment caused remarkable increment in the hardness, corrosion resistance and tribocorrosion performance as compared to the AA7075 aluminum alloy.

Originality/value

This study can be a practical reference and offers insight into the effects of duplex treating on the increase of hardness, corrosion and tribocorrosion performance.

Details

Industrial Lubrication and Tribology, vol. 71 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 February 2011

Raquel Bayón, Cristina Zubizarreta, Roman Nevshupa, Juan Carlos Rodriguez, Xana Fernández, Unai Ruiz de Gopegui and Amaya Igartua

The aim of this work is the study the tribological behaviour and tribocorrosion resistance of newly developed multilayer PVD coatings Cr/CrN and CrN/ZrCN applied on…

Abstract

Purpose

The aim of this work is the study the tribological behaviour and tribocorrosion resistance of newly developed multilayer PVD coatings Cr/CrN and CrN/ZrCN applied on nitrided F1272 steel for gear applications.

Design/methodology/approach

Tribological characterization has been completed by several tribological tests performed under ball‐on‐disc configuration, extreme pressure tests to determine the maximum load before the films failure and rolling‐sliding tests under line‐contact conditions (35‐40 per cent of sliding). The response of the different coatings to sodium chloride aggressive environment has been simulated by accelerated tribocorrosion tests, combining simultaneously chemical and mechanical factors. The synergistic effect of wear on corrosion behaviour and vice versa, has been studied in order to compare the protective properties of the different PVD coatings developed.

Findings

Cr/CrN PVD coating improves wear in almost a 90 per cent compared to the nitrided substrate, presenting a similar behaviour to this one under extreme pressure conditions. CrN/ZrCN coating also improved substrate wear and especially good behaviour for this coating was observed under extreme pressure conditions. Cr/CrN coating strongly decreases micropitting and scuffing effect when it is tested under rolling‐sliding configuration. Under micro‐pitting conditions, coating protects the substrate and reduces the fatigue of uncoated discs. When adhesive wear (scuffing) is studied also Cr/CrN improves notable the nitrided steel performance. Under simultaneously corrosion‐wear conditions, Cr/CrN coating registered the lowest material loss because in this case only corrosion effect contributed to the coated surface degradation being the mechanical contribution inappreciable.

Originality/value

New multilayer coatings with improved wear performance and tribocorrosion resistance have been developed and comprehensively characterized. These coatings can be used in advanced gears for corrosive environmental conditions as well as with biodegradable lubricants.

Details

Industrial Lubrication and Tribology, vol. 63 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 May 2019

Na Fan, Liqiang Chai, Peng Wang and Jun Liang

This paper aims to study the tribocorrosion behavior of 304 stainless steel (SS) sliding against SiC and Si3N4 counterparts in artificial seawater.

Abstract

Purpose

This paper aims to study the tribocorrosion behavior of 304 stainless steel (SS) sliding against SiC and Si3N4 counterparts in artificial seawater.

Design/methodology/approach

The tribocorrosion behavior of 304SS sliding against SiC and Si3N4 balls in artificial seawater has been investigated. The tests were conducted using a ball-on-disk rig equipped with an electrochemical workstation. The friction coefficient, surface morphology, wear volume and current density were determined.

Findings

When 304SS sliding against SiC ball, a smooth surface with a silica layer was formed on the top, which led to the low friction coefficient, current density and small wear volume. For 304SS-Si3N4 tribo-pair, a lot of metal debris was scattered on contact surfaces leading to high friction coefficient, current density and big wear volume.

Research limitations/implications

This research suggests that the lubrication effect of silicon-based ceramics is related to counterpart specimen in artificial seawater.

Practical implications

The results may help us to choose the appropriate ceramic ball under seawater environment.

Originality/value

The main originality of the work is to reveal the tribocorrosion behavior of 304SS sliding against SiC and Si3N4 balls, which help us to realize that the Si3N4 ball as water-lubricated ceramics could not exhibit lubrication effect when coupled with 304SS in artificial seawater.

Details

Industrial Lubrication and Tribology, vol. 71 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 March 2017

Gaofeng Han, Pengfei Jiang, Jianzhang Wang and Fengyuan Yan

This report aims to study the influence of applied potentials on the corrosion-wear behavior of 316L stainless steel (SS) in artificial seawater.

Abstract

Purpose

This report aims to study the influence of applied potentials on the corrosion-wear behavior of 316L stainless steel (SS) in artificial seawater.

Design/methodology/approach

In this study, wear-corrosion behavior of 316L SS had been studied under different applied potentials in artificial seawater by using a reformed pin-on-disc test rig. The applied potentials were selected ranging from –1.2 to 0.3 V (vs Ag/AgCl). The friction coefficient, mass loss rate and current density were determined.

Findings

It was indicated that mass loss was determined by the combined effect of mechanical wear and chemical corrosion. The wear-corrosion process was synergistic effects dominate while mechanical wear contributed the major material mass loss.

Practical implications

The results helped us to choose the appropriate metals for application under the specified environment.

Originality/value

The main originality of this research is to reveal the corrosion-wear behavior of 316L SS under different potentials, which would help us to understand different states of 316L SS under different corrosion environments.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 July 2018

Adekunle Sulaimon Ogunbadejo, Sunday Aribo, Oluwatoyin Adenike Olaseinde, Oladeji O. Ige and Peter Olubambi

This paper aims to investigate the stability of passive oxide film formed on the surface of 316L stainless steel in 3.5 Wt.% NaCl in the presence of two environmentally…

Abstract

Purpose

This paper aims to investigate the stability of passive oxide film formed on the surface of 316L stainless steel in 3.5 Wt.% NaCl in the presence of two environmentally non-toxic inhibitors, i.e. leaf extracts of Musa spp. (MS) and Jatropha curcas (JC).

Design/methodology/approach

Current transients and potentiodynamic polarization curves were used to explain the stability of the passive film on Current transients and potentiodynamic polarization curves were used to explain the stability of the passive film on 316L stainless steel at both ambient temperature (25 °C) and 70 °C. For the potentiostatic tests, the coupons underwent cathodic stripping to remove the native oxide on their surfaces at −850 mV for 600 s, and a potential of 50 mV was imposed to observe the repassivation for 200 s. For the potentiodynamic tests, the pitting potential measured at 100 μA/cm2, corrosion potential and cathodic current density were obtained for analysis.

Findings

The current transients perfectly fitted into the exponential decay curve; i = is + ipeak exp(−t/τ), where the decay constant, τ measures the repassivating speed and extent to which the newly formed film heals and stabilizes. The current transients showed that MS and JC help in the repassivating process, especially at 300 ppm and 200 ppm, respectively, both at the lower temperature. The potentiodynamic curves mostly correlated with the current transients except for the hybrid inhibitor. The inhibitors increased the pitting potentials at concentrations that are correlated to their scanning electron micrograph images.

Research limitations/implications

Because they are cheap and environmentally friendly, plant extracts that are proven corrosion inhibitors could be used to aid the formation of passive film on passive alloys in not-so-aggressive environments.

Practical implications

Both MS and JC improve the film stability mostly at intermediate concentrations of 200 and 300 ppm, respectively, at ambient temperature and 70° C.

Social implications

Using leaf extracts of plants as green inhibitors is considered an environmentally friendly engineering solution.

Originality/value

The leaf extracts are a convenient resource of green inhibitors because their plants are readily available or could be easily naturalized, the processing technique to obtain the extracts is very cheap and the inhibitors are environmentally friendly. In addition, cathodic stripping exposes a relatively larger surface area than that obtained using the most common forms of depassivation; hence, the efficiency of the inhibitor in aiding the formation of the new oxide film to cover the bare surface would be better measured. There is very lean research data on the combined use of green inhibitors and cathodic stripping to study repassivating kinetics of passive alloys.

Details

Pigment & Resin Technology, vol. 47 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 August 2021

Bukola Joseph Babalola, Ojo Jeremiah Akinribide, Olukayode Samuel Akinwamide and Peter Apata Olubambi

During the operation of nickel-based alloys as blades and discs in turbines, the sliding activity between metallic surfaces is subjected to structural and compositional…

Abstract

Purpose

During the operation of nickel-based alloys as blades and discs in turbines, the sliding activity between metallic surfaces is subjected to structural and compositional changes. In as much as friction and wear are influenced by interacting surfaces, it is necessary to investigate these effects. This study aims to understand better the mechanical and tribological characteristics of Ni-17Cr-10X (X = Mo, W, Ta) ternary alloy systems developed via spark plasma sintering (SPS) technique.

Design/methodology/approach

Nickel-based ternary alloys were fabricated via SPS technique at 50 MPa, 1100 °C, 100 °C/min and a dwell time of 10 mins. Scanning electron microscopy, X-Ray diffraction, energy dispersive X-ray spectroscopy, nanoindentation techniques and tribometer were used to assess the microstructure, phase composition, elemental dispersion, mechanical and tribological characteristics of the sintered nickel-based alloys.

Findings

The outcome of the investigation showed that the Ni-17Cr10Mo alloy exhibited the highest indentation hardness value of 8045 MPa, elastic modulus value of 386 GPa and wear resistance. At the same time, Ni-17Cr10W possessed the least mechanical and wear properties.

Originality/value

It can be shown that the SPS technique is efficient in the development of nickel-based alloys with good elemental distribution and without defects such as segregation of alloying elements, non-metallic inclusions. This is evident from the scanning electron microscopy micrographs.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 41