Search results

1 – 10 of 41
Open Access
Article
Publication date: 28 February 2024

Hassan Th. Alassafi, Khalid S. Al-Gahtani, Abdulmohsen S. Almohsen and Abdullah M. Alsugair

Heating, ventilating, air-conditioning and cooling (HVAC) systems are crucial in daily health-care facility services. Design-related defects can lead to maintenance issues…

Abstract

Purpose

Heating, ventilating, air-conditioning and cooling (HVAC) systems are crucial in daily health-care facility services. Design-related defects can lead to maintenance issues, causing service disruptions and cost overruns. These defects can be avoided if a link between the early design stages and maintenance feedback is established. This study aims to use experts’ experience in HVAC maintenance in health-care facilities to list and evaluate the risk of each maintenance issue caused by a design defect, supported by the literature.

Design/methodology/approach

Following semistructured interviews with experts, 41 maintenance issues were identified as the most encountered issues. Subsequently, a survey was conducted in which 44 participants evaluated the probability and impact of each design-caused issue.

Findings

Chillers were identified as the HVAC components most prone to design defects and cost impact. However, air distribution ducts and air handling units are the most critical HVAC components for maintaining healthy conditions inside health-care facilities.

Research limitations/implications

The unavailability of comprehensive data on the cost impacts of all design-related defects from multiple health-care facilities limits the ability of HVAC designers to furnish case studies and quantitative approaches.

Originality/value

This study helps HVAC designers acquire prior knowledge of decisions that may have led to unnecessary and avoidable maintenance. These design-related maintenance issues may cause unfavorable health and cost consequences.

Open Access
Article
Publication date: 12 May 2023

Olivia McDermott, Kevin ODwyer, John Noonan, Anna Trubetskaya and Angelo Rosa

This study aims to improve a construction company's overall project delivery by utilising lean six sigma (LSS) methods combined with building information modelling (BIM) to…

80182

Abstract

Purpose

This study aims to improve a construction company's overall project delivery by utilising lean six sigma (LSS) methods combined with building information modelling (BIM) to design, modularise and manufacture various building elements in a controlled factory environment off-site.

Design/methodology/approach

A case study in a construction company utilised lean six sigma (LSS) methodology and BIM to identify non-value add waste in the construction process and improve sustainability.

Findings

An Irish-based construction company manufacturing modular pipe racks for the pharmaceutical industry utilised LSS to optimise and standardise their off-site manufacturing (OSM) partners process and leverage BIM to design skids which could be manufactured offsite and transported easily with minimal on-site installation and rework required. Productivity was improved, waste was reduced, less energy was consumed, defects were reduced and the project schedule for completion was reduced.

Research limitations/implications

The case study was carried out on one construction company and one construction product type. Further case studies would ensure more generalisability. However, the implementation was tested on a modular construction company, and the methods used indicate that the generic framework could be applied and customized to any offsite company.

Originality/value

This is one of the few studies on implementing offsite manufacturing (OSM) utilising LSS and BIM in an Irish construction company. The detailed quantitative benefits and cost savings calculations presented as well as the use of the LSM methods and BIM in designing an OSM process can be leveraged by other construction organisations to understand the benefits of OSM. This study can help demonstrate how LSS and BIM can aid the construction industry to be more environmentally friendly.

Details

International Journal of Lean Six Sigma, vol. 15 no. 8
Type: Research Article
ISSN: 2040-4166

Keywords

Open Access
Article
Publication date: 5 June 2024

Anabela Costa Silva, José Machado and Paulo Sampaio

In the context of the journey toward digital transformation and the realization of a fully connected factory, concepts such as data science, artificial intelligence (AI), machine…

Abstract

Purpose

In the context of the journey toward digital transformation and the realization of a fully connected factory, concepts such as data science, artificial intelligence (AI), machine learning (ML) and even predictive models emerge as indispensable pillars. Given the relevance of these topics, the present study focused on the analysis of customer complaint data, employing ML techniques to anticipate complaint accountability. The primary objective was to enhance data accessibility, harnessing the potential of ML models to optimize the complaint handling process and thereby positively contribute to data-driven decision-making. This approach aimed not only to reduce the number of units to be analyzed and customer response time but also to underscore the pressing need for a paradigm shift in quality management. The application of AI techniques sought to enhance not only the efficiency of the complaint handling process and data accessibility but also to demonstrate how the integration of these innovative approaches could profoundly transform the way quality is conceived and managed within organizations.

Design/methodology/approach

To conduct this study, real customer complaint data from an automotive company was utilized. Our main objective was to highlight the importance of artificial intelligence (AI) techniques in the context of quality. To achieve this, we adopted a methodology consisting of 10 distinct phases: business analysis and understanding; project plan definition; sample definition; data exploration; data processing and pre-processing; feature selection; acquisition of predictive models; evaluation of the models; presentation of the results; and implementation. This methodology was adapted from data mining methodologies referenced in the literature, taking into account the specific reality of the company under study. This ensured that the obtained results were applicable and replicable across different fields, thereby strengthening the relevance and generalizability of our research findings.

Findings

The achieved results not only demonstrated the ability of ML models to predict complaint accountability with an accuracy of 64%, but also underscored the significance of the adopted approach within the context of Quality 4.0 (Q4.0). This study served as a proof of concept in complaint analysis, enabling process automation and the development of a guide applicable across various areas of the company. The successful integration of AI techniques and Q4.0 principles highlighted the pressing need to apply concepts of digitization and artificial intelligence in quality management. Furthermore, it emphasized the critical importance of data, its organization, analysis and availability in driving digital transformation and enhancing operational efficiency across all company domains. In summary, this work not only showcased the advancements achieved through ML application but also emphasized the pivotal role of data and digitization in the ongoing evolution of Quality 4.0.

Originality/value

This study presents a significant contribution by exploring complaint data within the organization, an area lacking investigation in real-world contexts, particularly focusing on practical applications. The development of standardized processes for data handling and the application of predictions for classification models not only demonstrated the viability of this approach but also provided a valuable proof of concept for the company. Most importantly, this work was designed to be replicable in other areas of the factory, serving as a fundamental basis for the company’s data scientists. Until then, limited data access and lack of automation in its treatment and analysis represented significant challenges. In the context of Quality 4.0, this study highlights not only the immediate advantages for decision-making and predicting complaint outcomes but also the long-term benefits, including clearer and standardized processes, data-driven decision-making and improved analysis time. Thus, this study not only underscores the importance of data and the application of AI techniques in the era of quality but also fills a knowledge gap by providing an innovative and replicable approach to complaint analysis within the organization. In terms of originality, this article stands out for addressing an underexplored area and providing a tangible and applicable solution for the company, highlighting the intrinsic value of aligning quality with AI and digitization.

Details

The TQM Journal, vol. 36 no. 9
Type: Research Article
ISSN: 1754-2731

Keywords

Open Access
Article
Publication date: 16 July 2024

Gianluca Biggi, Ludovica Principato and Fulvio Castellacci

This paper investigates strategies for addressing the global challenge of food loss and waste (FLW) within the food industry. It examines the relationship between corporate social…

Abstract

Purpose

This paper investigates strategies for addressing the global challenge of food loss and waste (FLW) within the food industry. It examines the relationship between corporate social responsibility (CSR) initiatives and state regulatory interventions for reducing FLW.

Design/methodology/approach

This mixed method study utilizes a unique panel dataset which includes the 150 largest food industry companies in Italy, Norway and the UK. It combines quantitative data analysis with qualitative insights derived from corporate strategies and corporate communications.

Findings

The analysis reveals that food companies with an established CSR strategy and in particular companies whose CSR reports highlight their environmental and social achievements are more likely to achieve in effective FLW reduction. Additionally, national-level regulatory interventions guided by European Union waste strategies act as pivotal benchmarks and encourage stricter corporate food waste management policies.

Practical implications

This research underscores the significance of CSR strategies and effective state regulation in the fight against FLW and offers policymakers and businesses valuable insights enabling development of robust strategies.

Social implications

By emphasizing the interplay between CSR and regulatory intervention, this research contributes to the achievement of a more sustainable and efficient global food system that addresses both economic and ethical concerns and could have far-reaching societal and environmental implications.

Originality/value

The paper sheds light on the interplay between CSR initiatives and regulatory interventions for tackling FLW and emphasizes their synergistic impact on sustainable practices within the food industry.

Details

British Food Journal, vol. 126 no. 13
Type: Research Article
ISSN: 0007-070X

Keywords

Open Access
Article
Publication date: 25 June 2024

Stylianos Karatzas, Vasiliki Lazari, Kalliopi Fouseki, Valeria Natalia Pracchi and Evagelos Balaskas

Heritage building management serves as a potent catalyst for sustainability, yet it poses a distinctive set of challenges. Achieving a harmonious balance between conserving the…

Abstract

Purpose

Heritage building management serves as a potent catalyst for sustainability, yet it poses a distinctive set of challenges. Achieving a harmonious balance between conserving the building's historical and cultural value and ensuring modern functionality and safety remains a primary concern. The present work proposes a socio-technical approach to the development and use of a digital twin (DT) that will integrate social data related to the use of heritage buildings with building and environmental data.

Design/methodology/approach

The paper presents a logical and systematic joined-up management framework to the targeted heritage buildings, according to a “Whole Building” approach. Our approach is informed by the underpinning assumption that a heritage building and even more a heritage neighborhood is a socio-technical, complex and dynamic system, the change of which depends on the dynamic interconnections of materials, competences, resources, values, space/environment, senses and time.

Findings

A heritage dynamics approach is adopted to unfold the dynamic nature of heritage and to better inform decisions that can be made in the present and future, achieving people-centered and place-based heritage management. This proposition underlines the heritage transformation as a complex systemic process that consists of nonlinear interconnections of multiple heterogeneous factors (values, senses, attitudes, spaces and resources).

Originality/value

This paper presents a multi-level framework of DTs that interact hierarchically to comprehensively understand, assimilate and seamlessly integrate intricate contexts, even when faced with conflicting conditions from diverse cultural heritage entities. This paper outlines the importance of the iterative system dynamics (SD) approach, which enables adaptive management and ensures the resilience of cultural heritage over time.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Open Access
Article
Publication date: 11 September 2024

Lindsey Bezek and Kwan-Soo Lee

Although ceramic additive manufacturing (AM) could be used to fabricate complex, high-resolution parts for diverse, functional applications, one ongoing challenge is optimizing…

Abstract

Purpose

Although ceramic additive manufacturing (AM) could be used to fabricate complex, high-resolution parts for diverse, functional applications, one ongoing challenge is optimizing the post-process, particularly sintering, conditions to consistently produce geometrically accurate and mechanically robust parts. This study aims to investigate how sintering temperature affects feature resolution and flexural properties of silica-based parts formed by vat photopolymerization (VPP) AM.

Design/methodology/approach

Test artifacts were designed to evaluate features of different sizes, shapes and orientations, and three-point bend specimens printed in multiple orientations were used to evaluate mechanical properties. Sintering temperatures were varied between 1000°C and 1300°C.

Findings

Deviations from designed dimensions often increased with higher sintering temperatures and/or larger features. Higher sintering temperatures yielded parts with higher strength and lower strain at break. Many features exhibited defects, often dependent on geometry and sintering temperature, highlighting the need for further analysis of debinding and sintering parameters.

Originality/value

To the best of the authors’ knowledge, this is the first time test artifacts have been designed for ceramic VPP. This work also offers insights into the effect of sintering temperature and print orientation on flexural properties. These results provide design guidelines for a particular material, while the methodology outlined for assessing feature resolution and flexural strength is broadly applicable to other ceramics, enabling more predictable part performance when considering the future design and manufacture of complex ceramic parts.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 20 August 2024

Miguel Araya-Calvo, Antti Järvenpää, Timo Rautio, Johan Enrique Morales-Sanchez and Teodolito Guillen-Girón

This study compares the fatigue performance and biocompatibility of as-built and chemically etched Ti-6Al-4V alloys in TPMS-gyroid and stochastic structures fabricated via Powder…

Abstract

Purpose

This study compares the fatigue performance and biocompatibility of as-built and chemically etched Ti-6Al-4V alloys in TPMS-gyroid and stochastic structures fabricated via Powder Bed Fusion Laser Beam (PBF-LB). This study aims to understand how complex lattice structures and post-manufacturing treatment, particularly chemical etching, affect the mechanical properties, surface morphology, fatigue resistance and biocompatibility of these metamaterials for biomedical applications.

Design/methodology/approach

Selective Laser Melting (SLM) technology was used to fabricate TPMS-gyroid and Voronoi stochastic designs with three different relative densities (0.2, 0.3 and 0.4) in Ti-6Al-4V ELI alloy. The as-built samples underwent a chemical etching process to enhance surface quality. Mechanical characterization included static compression and dynamic fatigue testing, complemented by scanning electron microscopy (SEM) for surface and failure analysis. The biocompatibility of the samples was assessed through in-vitro cell viability assays using the Alamar Blue assay and cell proliferation studies.

Findings

Chemical etching significantly improves the surface morphology, mechanical properties and fatigue resistance of both TPMS-gyroid and stochastic structures. Gyroid structures demonstrated superior mechanical performance and fatigue resistance compared to stochastic structures, with etching providing more pronounced benefits in these aspects. In-vitro biocompatibility tests showed high cytocompatibility for both as-built and etched samples, with etched samples exhibiting notably improved cell viability. The study also highlights the importance of design and post-processing in optimizing the performance of Ti64 components for biomedical applications.

Originality/value

The comparative analysis between as-built and etched conditions, alongside considering different lattice designs, provides valuable information for developing advanced biomedical implants. The demonstration of enhanced fatigue resistance and biocompatibility through etching adds significant value to the field of additive manufacturing, suggesting new avenues for designing and post-processing implantable devices.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 6 September 2022

Rose Clancy, Ken Bruton, Dominic T.J. O’Sullivan and Aidan J. Cloonan

Quality management practitioners have yet to cease the potential of digitalisation. Furthermore, there is a lack of tools such as frameworks guiding practitioners in the digital…

3547

Abstract

Purpose

Quality management practitioners have yet to cease the potential of digitalisation. Furthermore, there is a lack of tools such as frameworks guiding practitioners in the digital transformation of their organisations. The purpose of this study is to provide a framework to guide quality practitioners with the implementation of digitalisation in their existing practices.

Design/methodology/approach

A review of literature assessed how quality management and digitalisation have been integrated. Findings from the literature review highlighted the success of the integration of Lean manufacturing with digitalisation. A comprehensive list of Lean Six Sigma tools were then reviewed in terms of their effectiveness and relevance for the hybrid digitisation approach to process improvement (HyDAPI) framework.

Findings

The implementation of the proposed HyDAPI framework in an industrial case study led to increased efficiency, reduction of waste, standardised work, mistake proofing and the ability to root cause non-conformance products.

Research limitations/implications

The activities and tools in the HyDAPI framework are not inclusive of all techniques from Lean Six Sigma.

Practical implications

The HyDAPI framework is a flexible guide for quality practitioners to digitalise key information from manufacturing processes. The framework allows organisations to select the appropriate tools as needed. This is required because of the varying and complex nature of organisation processes and the challenge of adapting to the continually evolving Industry 4.0.

Originality/value

This research proposes the HyDAPI framework as a flexible and adaptable approach for quality management practitioners to implement digitalisation. This was developed because of the gap in research regarding the lack of procedures guiding organisations in their digital transition to Industry 4.0.

Details

International Journal of Lean Six Sigma, vol. 15 no. 5
Type: Research Article
ISSN: 2040-4166

Keywords

Open Access
Article
Publication date: 9 July 2024

Morteza Ghobakhloo, Masood Fathi, Mohammad Iranmanesh, Mantas Vilkas, Andrius Grybauskas and Azlan Amran

This study offers practical insights into how generative artificial intelligence (AI) can enhance responsible manufacturing within the context of Industry 5.0. It explores how…

2341

Abstract

Purpose

This study offers practical insights into how generative artificial intelligence (AI) can enhance responsible manufacturing within the context of Industry 5.0. It explores how manufacturers can strategically maximize the potential benefits of generative AI through a synergistic approach.

Design/methodology/approach

The study developed a strategic roadmap by employing a mixed qualitative-quantitative research method involving case studies, interviews and interpretive structural modeling (ISM). This roadmap visualizes and elucidates the mechanisms through which generative AI can contribute to advancing the sustainability goals of Industry 5.0.

Findings

Generative AI has demonstrated the capability to promote various sustainability objectives within Industry 5.0 through ten distinct functions. These multifaceted functions address multiple facets of manufacturing, ranging from providing data-driven production insights to enhancing the resilience of manufacturing operations.

Practical implications

While each identified generative AI function independently contributes to responsible manufacturing under Industry 5.0, leveraging them individually is a viable strategy. However, they synergistically enhance each other when systematically employed in a specific order. Manufacturers are advised to strategically leverage these functions, drawing on their complementarities to maximize their benefits.

Originality/value

This study pioneers by providing early practical insights into how generative AI enhances the sustainability performance of manufacturers within the Industry 5.0 framework. The proposed strategic roadmap suggests prioritization orders, guiding manufacturers in decision-making processes regarding where and for what purpose to integrate generative AI.

Details

Journal of Manufacturing Technology Management, vol. 35 no. 9
Type: Research Article
ISSN: 1741-038X

Keywords

Open Access
Article
Publication date: 10 July 2024

Felix Endress, Julius Tiesler and Markus Zimmermann

Metal laser-powder-bed-fusion using laser-beam parts are particularly susceptible to contamination due to particles attached to the surface. This may compromise so-called…

235

Abstract

Purpose

Metal laser-powder-bed-fusion using laser-beam parts are particularly susceptible to contamination due to particles attached to the surface. This may compromise so-called technical cleanliness (e.g. in NASA RPTSTD-8070, ASTM G93, ISO 14952 or ISO 16232), which is important for many 3D-printed components, such as implants or liquid rocket engines. The purpose of the presented comparative study is to show how cleanliness is improved by design and different surface treatment methods.

Design/methodology/approach

Convex and concave test parts were designed, built and surface-treated by combinations of media blasting, electroless nickel plating and electrochemical polishing. After cleaning and analysing the technical cleanliness according to ASTM and ISO standards, effects on particle contamination, appearance, mass and dimensional accuracy are presented.

Findings

Contamination reduction factors are introduced for different particle sizes and surface treatment methods. Surface treatments were more effective for concave design features, however, the initial and resulting absolute particle contamination was higher. Results further indicate that there are trade-offs between cleanliness and other objectives in design. Design guidelines are introduced to solve conflicts in design when requirements for cleanliness exist.

Originality/value

This paper recommends designing parts and corresponding process chains for manufacturing simultaneously. Incorporating post-processing characteristics into the design phase is both feasible and essential. In the experimental study, electroless nickel plating in combination with prior glass bead blasting resulted in the lowest total remaining particle contamination. This process applied for cleanliness is a novelty, as well as a comparison between the different surface treatment methods.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Only Open Access

Year

Last 3 months (41)

Content type

1 – 10 of 41