Search results

1 – 10 of 35
Article
Publication date: 26 February 2024

Xiaohui Jia, Chunrui Tang, Xiangbo Zhang and Jinyue Liu

This study aims to propose an efficient dual-robot task collaboration strategy to address the issue of low work efficiency and inability to meet the production needs of a single…

Abstract

Purpose

This study aims to propose an efficient dual-robot task collaboration strategy to address the issue of low work efficiency and inability to meet the production needs of a single robot during construction operations.

Design/methodology/approach

A hybrid task allocation method based on integer programming and auction algorithms, with the aim of achieving a balanced workload between two robots has been proposed. In addition, while ensuring reasonable workload allocation between the two robots, an improved dual ant colony algorithm was used to solve the dual traveling salesman problem, and the global path planning of the two robots was determined, resulting in an efficient and collision-free path for the dual robots to operate. Meanwhile, an improved fast Random tree rapidly-exploring random tree algorithm is introduced as a local obstacle avoidance strategy.

Findings

The proposed method combines randomization and iteration techniques to achieve an efficient task allocation strategy for two robots, ensuring the relative optimal global path of the two robots in cooperation and solving complex local obstacle avoidance problems.

Originality/value

This method is applied to the scene of steel bar tying in construction work, with the workload allocation and collaborative work between two robots as evaluation indicators. The experimental results show that this method can efficiently complete the steel bar banding operation, effectively reduce the interference between the two robots and minimize the interference of obstacles in the environment.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 23 February 2024

Guizhi Lyu, Peng Wang, Guohong Li, Feng Lu and Shenglong Dai

The purpose of this paper is to present a wall-climbing robot platform for heavy-load with negative pressure adsorption, which could be equipped with a six-degree of freedom (DOF…

Abstract

Purpose

The purpose of this paper is to present a wall-climbing robot platform for heavy-load with negative pressure adsorption, which could be equipped with a six-degree of freedom (DOF) collaborative robot (Cobot) and detection device for inspecting the overwater part of concrete bridge towers/piers for large bridges.

Design/methodology/approach

By analyzing the shortcomings of existing wall-climbing robots in detecting concrete structures, a wall-climbing mobile manipulator (WCMM), which could be compatible with various detection devices, is proposed for detecting the concrete towers/piers of the Hong Kong-Zhuhai-Macao Bridge. The factors affecting the load capacity are obtained by analyzing the antislip and antioverturning conditions of the wall-climbing robot platform on the wall surface. Design strategies for each part of the structure of the wall-climbing robot are provided based on the influencing factors. By deriving the equivalent adsorption force equation, analyzed the influencing factors of equivalent adsorption force and provided schemes that could enhance the load capacity of the wall-climbing robot.

Findings

The adsorption test verifies the maximum negative pressure that the fan module could provide to the adsorption chamber. The load capacity test verifies it is feasible to achieve the expected bearing requirements of the wall-climbing robot. The motion tests prove that the developed climbing robot vehicle could move freely on the surface of the concrete structure after being equipped with a six-DOF Cobot.

Practical implications

The development of the heavy-load wall-climbing robot enables the Cobot to be installed and equipped on the wall-climbing robot, forming the WCMM, making them compatible with carrying various devices and expanding the application of the wall-climbing robot.

Originality/value

A heavy-load wall-climbing robot using negative pressure adsorption has been developed. The wall-climbing robot platform could carry a six-DOF Cobot, making it compatible with various detection devices for the inspection of concrete structures of large bridges. The WCMM could be expanded to detect the concretes with similar structures. The research and development process of the heavy-load wall-climbing robot could inspire the design of other negative-pressure wall-climbing robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 10 July 2023

Narjess Said, Kaouther Ben Mansour, Nedra Bahri-Ammari, Anish Yousaf and Abhishek Mishra

This study aims to propose a research model integrating technology acceptance model 3 (TAM3) constructs and human aspects of humanoid service robots (HSRs), measured by the…

1091

Abstract

Purpose

This study aims to propose a research model integrating technology acceptance model 3 (TAM3) constructs and human aspects of humanoid service robots (HSRs), measured by the Godspeed questionnaire series and tested across two hotel properties in Japan and the USA.

Design/methodology/approach

Potential participants were approached randomly by email invitation. A final sample size of 395 across two hotels, one in Japan and the other in the USA, was obtained, and the data were analysed using structural equation modelling.

Findings

The results confirm that perceived usefulness, driven by subjective norms and output quality, and perceived ease of use, driven by perceived enjoyment and absence of anxiety, are the immediate direct determinants of users’ re-patronage intentions for HSRs. Results also showed that users prefer anthropomorphism, perceived intelligence and the safety of an HSR for reusing it.

Practical implications

The findings have practical implications for the hospitality industry, suggesting multiple attributes of an HSRs that managers need to consider before deploying them in their properties.

Originality/value

The current study proposes an integrated model determining factors that affect the re-patronage of HSRs in hotels.

Details

International Journal of Contemporary Hospitality Management, vol. 36 no. 6
Type: Research Article
ISSN: 0959-6119

Keywords

Article
Publication date: 7 November 2022

Buddhini Ginigaddara, Srinath Perera, Yingbin Feng, Payam Rahnamayiezekavat and Mike Kagioglou

Industry 4.0 is exacerbating the need for offsite construction (OSC) adoption, and this rapid transformation is pushing the boundaries of construction skills towards extensive…

Abstract

Purpose

Industry 4.0 is exacerbating the need for offsite construction (OSC) adoption, and this rapid transformation is pushing the boundaries of construction skills towards extensive modernisation. The adoption of this modern production strategy by the construction industry would redefine the position of OSC. This study aims to examine whether the existing skills are capable of satisfying the needs of different OSC types.

Design/methodology/approach

A critical literature review evaluated the impact of transformative technology on OSC skills. An existing industry standard OSC skill classification was used as the basis to develop a master list that recognises emerging and diminishing OSC skills. The master list recognises 67 OSC skills under six skill categories: managers, professionals, technicians and trade workers, clerical and administrative workers, machinery operators and drivers and labourers. The skills data was extracted from a series of 13 case studies using document reviews and semi-structured interviews with project stakeholders.

Findings

The multiple case study evaluation recognised 13 redundant skills and 16 emerging OSC skills such as architects with building information modelling and design for manufacture and assembly knowledge, architects specialised in design and logistics integration, advanced OSC technical skills, factory operators, OSC estimators, technicians for three dimensional visualisation and computer numeric control operators. Interview findings assessed the current state and future directions for OSC skills development. Findings indicate that the prevailing skills are not adequate to readily relocate construction activities from onsite to offsite.

Originality/value

To the best of the authors’ knowledge, this research is one of the first studies that recognises the major differences in skill requirements for non-volumetric and volumetric OSC types.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 9 April 2024

Krisztina Demeter, Levente Szász, Béla-Gergely Rácz and Lehel-Zoltán Györfy

The purpose of this paper is to investigate how different manufacturing technologies are bundled together and how these bundles influence operations performance and, indirectly…

Abstract

Purpose

The purpose of this paper is to investigate how different manufacturing technologies are bundled together and how these bundles influence operations performance and, indirectly, business performance. With the emergence of Industry 4.0 (I4.0) technologies, manufacturing companies can use a wide variety of advanced manufacturing technologies (AMT) to build an efficient and effective production system. Nevertheless, the literature offers little guidance on how these technologies, including novel I4.0 technologies, should be combined in practice and how these combinations might have a different impact on performance.

Design/methodology/approach

Using a survey study of 165 manufacturing plants from 11 different countries, we use factor analysis to empirically derive three distinct manufacturing technology bundles and structural equation modeling to quantify their relationship with operations and business performance.

Findings

Our findings support an evolutionary rather than a revolutionary perspective. I4.0 technologies build on traditional manufacturing technologies and do not constitute a separate direction that would point towards a fundamental digital transformation of companies within our sample. Performance effects are rather weak: out of the three technology bundles identified, only “automation and robotization” have a positive influence on cost efficiency, while “base technologies” and “data-enabled technologies” do not offer a competitive advantage, neither in terms of cost nor in terms of differentiation. Furthermore, while the business performance impact is positive, it is quite weak, suggesting that financial returns on technology investments might require longer time periods.

Originality/value

Relying on a complementarity approach, our research offers a novel perspective on technology implementation in the I4.0 era by investigating novel and traditional manufacturing technologies together.

Details

Journal of Manufacturing Technology Management, vol. 35 no. 9
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 17 February 2022

Manish Kumar Ghodki

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and…

Abstract

Purpose

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and develop a hardware prototype of master–slave electric motors based biomass conveyor system to use the motors under normal operating conditions without overheating.

Design/methodology/approach

The hardware prototype of the system used master–slave electric motors for embedded controller operated robotic arm to automatically replace conveyor motors by one another. A mixed signal based embedded controller (C8051F226DK), fully compliant with IEEE 1149.1 specifications, was used to operate the entire system. A precise temperature measurement of motor with the help of negative temperature coefficient sensor was possible due to the utilization of industry standard temperature controller (N76E003AT20). Also, a pulse width modulation based speed control was achieved for master–slave motors of biomass conveyor.

Findings

As compared to conventional energy based mains supply, the system is self-sufficient to extract more energy from solar supply with an energy increase of 11.38%. With respect to conventional energy based \ of 47.31%, solar energy based higher energy saving of 52.69% was reported. Also, the work achieved higher temperature reduction of 34.26% of the motor as compared to previous cooling options.

Originality/value

The proposed technique is free from air, liquid and phase-changing material based cooling materials. As a consequence, the work prevents the wastage of these materials and does not cause the risk of health hazards. Also, the motors are used with their original dimensions without facing any leakage problems.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 19 February 2024

R.K. Jena

Blockchain’s potential is so significant that business activities across all industries can be drastically altered. Furthermore, the characteristics of blockchain appear to be…

Abstract

Purpose

Blockchain’s potential is so significant that business activities across all industries can be drastically altered. Furthermore, the characteristics of blockchain appear to be well-suited to accounting requirements. However, accounting professionals’ attitude and intention toward blockchain adoption are not clear, particularly in India. Thus, this study aims to investigate and evaluate accountants’ intention to adopt blockchain technology in accounting activities.

Design/methodology/approach

This study examined and assessed accountants’ intention to use blockchain in accounting. To effectively measure usage intention, this study extended the unified theory of acceptance and use of technology (UTAUT) model by including context-specific constructs. To empirically test and validate the proposed model, data were collected from “369” professional accountants in India.

Findings

The findings revealed that facilitating conditions, performance expectancy and initial trust had a significant impact on adoption. Furthermore, the regulatory framework materially moderated the association between usage intention and its predictors.

Originality/value

These findings provide new empirical evidence about the impact of different predictors of usage intention by extending the UTAUT model. Relevant stakeholders can refer to this pioneering study to increase the adoption of blockchain as an efficient and trustworthy system among professional accountants, particularly in developing countries such as India.

Details

Review of Accounting and Finance, vol. 23 no. 3
Type: Research Article
ISSN: 1475-7702

Keywords

Article
Publication date: 18 April 2024

Li Li, Tong Huang, Chujia Pan, J.F. Pan and Wenbin Su

The purpose of this paper aims to investigate the adaptive impedance control and its optimized PSO algorithm for force tracking of a dual-arm cooperative robot. Because the…

Abstract

Purpose

The purpose of this paper aims to investigate the adaptive impedance control and its optimized PSO algorithm for force tracking of a dual-arm cooperative robot. Because the dual-arm robot is directly in contact with external environment, controlling the mutual force between robot and external environment is of great importance. Besides, a high compliance of the robot should be guaranteed.

Design/methodology/approach

An impedance control based on Particle Swarm Optimization (PSO) algorithm is designed to track the mutual force and achieve compliance control of the robot end.

Findings

The experimental results show that the impedance control coefficients can be automatically tuned converged by PSO algorithm.

Originality/value

The system can reach a steady state within 0.03 s with overshoot convergence, and the force fluctuation range at the steady state decreases to about ±0.08 N even under the force mutation condition.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 March 2024

Zhiqiang Wang

This paper aims to present a novel lightweight distribution grid operating robot system with focus on lightweight and multi-functionality, aiming for autonomous and live-line…

Abstract

Purpose

This paper aims to present a novel lightweight distribution grid operating robot system with focus on lightweight and multi-functionality, aiming for autonomous and live-line maintenance operations.

Design/methodology/approach

A ground-up redesign of the dual-arm robotic system with 12-DoF is applied for substantial weight reduction; a dual-mode operating control framework is proposed, with vision-guided autonomous operation embedded with real-time manual teleoperation controlling both manipulators simultaneously; a quick-swap tooling system is developed to conduct multi-functional operation tasks. A prototype robotic system is constructed and validated in a series of operational experiments in an emulated environment both indoors and outdoors.

Findings

The overall weight of the system is successfully brought down to under 150 kg, making it suitable for the majority of vehicle-mounted aerial work platforms, and it can be flexibly and quickly deployed in population dense areas with narrow streets. The system equips with two dexterous robotic manipulators and up to six interchangeable tools, and a vision system for AI-based autonomous operations. A quick-change tooling system ensures the robot to change tools on-the-go without human intervention.

Originality/value

The resulting dual-arm robotic live-line operation system robotic system could be compact and lightweight enough to be deployed on a wide range of available aerial working platforms with high mobility and efficiency. The robot could both conduct routine operation tasks fully autonomously without human direct operation and be manually operated when required. The quick-swap tooling system enables lightweight and durable interchangeability of multiple end-effector tools, enabling future expansion of operating capabilities across different tasks and operating scenarios.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 August 2023

Debabrata Manna and Tanmay De Sarkar

The purpose of this paper is to highlight the sources of noise generation in a library and suggest the implementation of a sound masking system to provide acoustic comfort…

129

Abstract

Purpose

The purpose of this paper is to highlight the sources of noise generation in a library and suggest the implementation of a sound masking system to provide acoustic comfort, maintain speech privacy and create an environment more engaging for the users.

Design/methodology/approach

Analyzing the existing literature and exploring the existing practices as observed in different libraries, the study gives an overview of the sound masking initiatives in libraries.

Findings

With practical examples of libraries, the study demonstrates how a sound masking system has been implemented to invoke better acoustic design in the library. The expansion of various activities in the library and a gradual shift from individual attention to a collaborative approach necessitates a strong focus on the acoustic design architecture of the library. The study showcases how the libraries adopt sound masking with the introduction of acoustic panels, dual panel partitions, sound-absorbent false ceilings, sound insulation, sound isolation and noise-dampening measures, installing furniture with sound containment features, adopting vibration control mechanism, mounting of white noise machines, etc., keeping the aesthetic quotient of the library alive.

Originality/value

The study attempts to show the current practices of the adoption of the sound masking system in libraries and promotes collaborative reading with the creation of an acoustic design-influenced library environment to control noise and reverberation and provide a comfortable reading environment.

Details

Library Hi Tech News, vol. 41 no. 4
Type: Research Article
ISSN: 0741-9058

Keywords

Access

Year

Last week (35)

Content type

Article (35)
1 – 10 of 35