Search results

1 – 10 of over 1000
Article
Publication date: 1 December 2005

Y. Zhang

To make a derivation of the load‐carrying capacity of elastohydrodynamic lubrication for special operating conditions, i.e. extremely heavy loads or extremely low rolling speeds…

Abstract

Purpose

To make a derivation of the load‐carrying capacity of elastohydrodynamic lubrication for special operating conditions, i.e. extremely heavy loads or extremely low rolling speeds based on the Newtonian fluid model by taking the Grubin‐type EHL inlet zone analysis, justify the load‐carrying capacity of elastohydrodynamic lubrication film in these operating conditions, and propose future trends of the research in EHL and mixed EHL based on the obtained results in the present paper.

Design/methodology/approach

A Grubin‐type EHL inlet zone analysis is carried out for the isothermal EHL of line contacts in special operating conditions, i.e. extremely heavy loads or extremely low rolling speeds based on the Newtonian fluid model. Comparison is made between the central EHL film thickness in line contacts, respectively, predicted by conventional EHL theories and accurately predicted from the present analysis for these operating conditions. An interpretation is made for the EHL film thickness in these operating conditions by taking the approach of the transportation and flow of the fluid through elastohydrodynamic contact when the EHL film is, respectively, thick and molecularly thin in the Hertzian zone. Conclusions are drawn on the load‐carrying capacity of EHL, EHL contact regimes and mixed EHL regimes in these operating conditions.

Findings

The present EHL inlet zone analysis shows that the EHL film thickness in the Hertzian zone is on the nanometer scale and the lubricant is non‐continuum across the film thickness in the Hertzian zone at relatively heavy loads in line contact EHL when the dimensionless rolling speed is lower than the dimensionless characteristic rolling speed Uch=0.0372W1.50/G. In this case, the central EHL film thickness in line contact EHL predicted by the conventional EHL theory may be several orders of magnitudes higher than that accurately predicted. This difference may be greater for heavier loads.The present results for line contact EHL based on the Newtonian fluid model show that in line contact EHL, for relatively heavy loads and the dimensionless rolling speed lower than the dimensionless characteristic rolling speed Uch=0.0372W1.50/G, the EHL analysis needs to further incorporate the lubricant non‐continuum effect across the film thickness in part of the lubricated area to investigate the EHL film thickness and the EHL film pressure in the contact in this very low film thickness condition; only the results based on such an analysis are believable for the EHL stage where the lubricant film thickness in the Hertzian zone approaches to zero and then vanishes; the results for EHL based on the Newtonian fluid model is unable to conclude that the EHL film thickness in the Hertzian zone is zero and dry contact occurs between the contact surfaces in EHL in any operating condition for ignoring the lubricant non‐continuum regime governing the EHL stage preceding the occurrence of the zero lubricant film thickness in EHL.

Practical implications

A very useful source of information for academic scientists, engineers and tribologists who are engaged in the study and application of the theory of elastohydrodynamic lubrication.

Originality/value

A derivation is first carried out for the isothermal EHL of line contacts in extremely heavy loads or extremely low rolling speeds by taking the Grubin‐type EHL inlet zone analysis by the present paper. Results and conclusions on the load‐carrying capacity of EHL in these operating conditions are first strict and thus convincing. These results are also original in clarifying the future trends of the researches in EHL and mixed EHL.

Details

Industrial Lubrication and Tribology, vol. 57 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 23 February 2024

Guizhi Lyu, Peng Wang, Guohong Li, Feng Lu and Shenglong Dai

The purpose of this paper is to present a wall-climbing robot platform for heavy-load with negative pressure adsorption, which could be equipped with a six-degree of freedom (DOF…

Abstract

Purpose

The purpose of this paper is to present a wall-climbing robot platform for heavy-load with negative pressure adsorption, which could be equipped with a six-degree of freedom (DOF) collaborative robot (Cobot) and detection device for inspecting the overwater part of concrete bridge towers/piers for large bridges.

Design/methodology/approach

By analyzing the shortcomings of existing wall-climbing robots in detecting concrete structures, a wall-climbing mobile manipulator (WCMM), which could be compatible with various detection devices, is proposed for detecting the concrete towers/piers of the Hong Kong-Zhuhai-Macao Bridge. The factors affecting the load capacity are obtained by analyzing the antislip and antioverturning conditions of the wall-climbing robot platform on the wall surface. Design strategies for each part of the structure of the wall-climbing robot are provided based on the influencing factors. By deriving the equivalent adsorption force equation, analyzed the influencing factors of equivalent adsorption force and provided schemes that could enhance the load capacity of the wall-climbing robot.

Findings

The adsorption test verifies the maximum negative pressure that the fan module could provide to the adsorption chamber. The load capacity test verifies it is feasible to achieve the expected bearing requirements of the wall-climbing robot. The motion tests prove that the developed climbing robot vehicle could move freely on the surface of the concrete structure after being equipped with a six-DOF Cobot.

Practical implications

The development of the heavy-load wall-climbing robot enables the Cobot to be installed and equipped on the wall-climbing robot, forming the WCMM, making them compatible with carrying various devices and expanding the application of the wall-climbing robot.

Originality/value

A heavy-load wall-climbing robot using negative pressure adsorption has been developed. The wall-climbing robot platform could carry a six-DOF Cobot, making it compatible with various detection devices for the inspection of concrete structures of large bridges. The WCMM could be expanded to detect the concretes with similar structures. The research and development process of the heavy-load wall-climbing robot could inspire the design of other negative-pressure wall-climbing robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 27 September 2022

Kang Yan, Hulin Li, Ning Ding, Dan Jiang and Xianghui Meng

Friction and wear are very important factors in predicting the performance of journal bearings, particularly under heavy load in start-up processes. However, there are few…

Abstract

Purpose

Friction and wear are very important factors in predicting the performance of journal bearings, particularly under heavy load in start-up processes. However, there are few relevant studies on the numerical model. This study aims to establish a transient-mixed lubrication model to predict the performance of journal bearings, focusing on the friction and wear behavior under heavy load during start-up.

Design/methodology/approach

The average Reynold equation, three-dimensional energy equation, shear stress model for friction and Archard model for wear are coupled in the transient model by finite difference method. The linear wear simulation method is bought out to reduce the update times and the calculation time.

Findings

The different start-up accelerations and linear wear times set are compared and discussed, which indicates a reasonable start-up acceleration is necessary for journal bearings under heavy load during start-up, and setting linear wear times is an effective method to reduce the simulation time significantly. Furthermore, the wear profile in the start-up process spreads in both the clearance and circumferential directions, but mainly in the clearance direction, which increases the minimum film thickness and affects the friction performance.

Originality/value

This study is of great significance for the numerical prediction of the transient performance of journal bearings during start-up considering friction and wear.

Details

Industrial Lubrication and Tribology, vol. 74 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 December 2022

Xuliang Yao, Xiao Han, Yuefeng Liao and Jingfang Wang

This paper aims to better design the resonant tank parameters for LLC resonant converter. And, it is found that under heavy load, the voltage gain is affected by junction…

Abstract

Purpose

This paper aims to better design the resonant tank parameters for LLC resonant converter. And, it is found that under heavy load, the voltage gain is affected by junction capacitors of the primary side switching and the parasitic parameters of the secondary side diodes converted to the primary side, which will cause the voltage gain decreased when the switching frequency decreased.

Design/methodology/approach

This paper proposes an optimization parameters design method to solve this problem, which was based on impedance model considering the parasitic parameters of switching devices and diodes.

Findings

The effectiveness of the proposed method is verified by impedance Bode plots and experimental results.

Originality/value

From the perspective of impedance modeling, this paper finds the reasons for the insufficient voltage regulation capability of LLC resonant converters under heavy load and finds solutions through analysis.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 2 October 2007

Rende Liu

This paper sets out to develop a reliable analysis method based upon a low‐cost procedure to monitor the wear condition of low‐speed and heavily loaded rolling element bearing.

Abstract

Purpose

This paper sets out to develop a reliable analysis method based upon a low‐cost procedure to monitor the wear condition of low‐speed and heavily loaded rolling element bearing.

Design/methodology/approach

Special solvents for grease are invented and new test methods, including spectroscopy and ferrography of used grease, are developed to monitor the wear condition of a deferred bearing of ladle turret in continuous casting.

Findings

According to the analytical results, the service life of the ladle turret bearing in No. 1 continuous casting machine is extended to 14 years and significant expense is saved, which proved that it is feasible for grease analysis to be used in the condition monitoring of low speed and heavily loaded rolling element bearing, especially those deferrable bearings.

Research limitations/implications

The fault mechanism of the huge bearing is not estimated.

Practical implications

One useful analysis method to monitor the wear condition of low speed and heavily loaded rolling element bearing is reported, and it can be used in other industrial fields.

Originality/value

This paper provides a way of studying condition monitoring of low‐speed and heavily loaded rolling element bearings.

Details

Industrial Lubrication and Tribology, vol. 59 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 August 2022

Kanghao Yan and Dan Huang

Multitilting-pad journal bearings (MTPJBs) used in large-scale hydraulic turbines often suffer from complex operating conditions, which greatly influence the overall performance…

Abstract

Purpose

Multitilting-pad journal bearings (MTPJBs) used in large-scale hydraulic turbines often suffer from complex operating conditions, which greatly influence the overall performance of the rotating machine. The purpose of this study is to establish a thermal-elastic-hydrodynamic lubrication model for MTPJBs that can predict the static and dynamic characteristics of high-speed and heavy-load MTPJBs under different operating conditions.

Design/methodology/approach

A thermo-elasto-hydrodynamic lubrication model considering the turbulence effect is proposed for high-speed and heavy-load TPJBs, which is solved using the coupled finite difference method and finite element method. The model considered the turbulence effect, thermal energy diffusion, viscosity–temperature–pressure relationship and elastic deformation of the pads. The influences of the operating conditions on static and dynamic characteristics of tilting pad journal bearings were analyzed in depth.

Findings

The operating conditions have a strong effect on the static properties of the bearings. The dynamic characteristics of the TPJB were the most influenced by the shaft speed. The effects of the load direction on the dynamic properties of the TPJB were much stronger than those of the static characteristics.

Originality/value

This study used analytical methods and models to provide theoretical guidance for evaluating lubricating characteristics, assembling conditions and overall health.

Article
Publication date: 12 April 2022

Weijie Zhou, Yi Zhang, Bin Yang, Xing Lei, Zhaowen Hu and Wei Wang

This study aims to investigate the microtopography transformation at a low-speed heavy-load interface with the lubrication of powder particles and its nonlinear friction effect on…

Abstract

Purpose

This study aims to investigate the microtopography transformation at a low-speed heavy-load interface with the lubrication of powder particles and its nonlinear friction effect on the sliding pair in contact.

Design/methodology/approach

Based on the universal mechanical tester (UMT) tribometer and VK shape-measuring laser microscope, comparative friction experiments were conducted with graphite powder lubrication. The friction coefficient with nonlinear fluctuations and the three-dimensional morphology of the boundary layer at the interface were observed and analyzed under different operating conditions. The effects on lubrication mechanisms and frictional nonlinearity at the sliding pair were focused on under different surface roughness and powder layer thickness conditions.

Findings

At a certain external load and sliding speed, the initial specimen surface with an appropriate initial roughness and powder thickness can store and bond the powder lubricant to form a boundary film readily. The relatively flat and firm boundary layer of powder at the microscopic interface can reduce the coefficient of friction and suppress its nonlinear fluctuation effectively. Therefore, proper surface roughness and powder layer thickness are beneficial to the graphite lubrication and stability maintenance of a friction pair.

Originality/value

This research is conducive to developing a deep understanding of the microtopography transformation with frictional nonlinearity at a low-speed heavy-load interface with graphite powder lubrication.

Details

Industrial Lubrication and Tribology, vol. 74 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 14 September 2015

Xia He, Lin Zhong, Guorong Wang, Yang Liao and Qingyou Liu

This paper aims to carry out tribological experiments to explore the applications of femtosecond laser surface texturing technology on rock bit sliding bearing to enhance the…

2500

Abstract

Purpose

This paper aims to carry out tribological experiments to explore the applications of femtosecond laser surface texturing technology on rock bit sliding bearing to enhance the lifetime and working performance of rock bit sliding bearing under high temperature and heavy load conditions.

Design/methodology/approach

Surface textures on beryllium bronze specimen were fabricated by femtosecond laser ablation (800 nm wavelength, 40 fs pulse duration, 1 kHz pulse repetition frequency), and then the tribological behaviors of pin-on-disc configuration of rock bit bearing were performed with 20CrNiMo/beryllium bronze tribo-pairs under non-Newtonian lubrication of rock bit grease.

Findings

The results showed that the surface texture on beryllium bronze specimens with specific geometrical features can be achieved by optimizing femtosecond laser processing via adjusting laser peak power and exposure time; more than 52 per cent of friction reduction was obtained from surface texture with a depth-to-diameter ratio of 0.165 and area ratio of 5 per cent at a shear rate of 1301 s−1 under the heavy load of 20 MPa and high temperature of 120°C, and the lubrication regime of rock bit bearing unit tribo-pairs was improved from boundary to mixed lubrication, which indicated that femtosecond laser ablation technique showed great potential in promoting service life and working performance of rock bit bearing.

Originality/value

Femtosecond laser-irradiated surface texture has the potential possibility for application in rock bit sliding bearing to improve the lubrication performance. Because proper micro dimples showed good lubrication and wear resistance performance for unit tribo-pairs of rock bit sliding bearing under high temperature, heavy load and non-Newtonian lubrication conditions, which is very important to improve the efficiency of breaking rock and accelerate the development of deep-water oil and gas resources.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 October 2007

R. Raghavendra Rao and K. Raja Sekhar

This paper aims to study the effects of couple stresses and surface roughness on the minimum film thickness of heavily loaded rollers and to discuss these by following Grubin's…

Abstract

Purpose

This paper aims to study the effects of couple stresses and surface roughness on the minimum film thickness of heavily loaded rollers and to discuss these by following Grubin's approach and Crook's approximations.

Design/methodology/approach

A generalised form of Reynolds equation for rough surfaces with lubricant as couple stress fluid is derived. This equation is then used to study the combined effect of couple stresses and surface roughness on the roller bearings under heavily loaded conditions. EHD minimum film thickness expressions is obtained by following Grubin's approach and Crook's approximation and it is studied numerically.

Findings

It is found that, as the chain length of the additive molecules increases, the elastohydrodynamic minimum film thickness increases. Also, as the mean height of roughness asperities increases, the elastohydrodynamic minimum film thickness increases for the transversal roughness and it decreases in the case of longitudinal roughness.

Research limitations/implications

These effects are studied theoretically by the mathematical equations in heavily loaded roller bearings.

Practical implications

Reduction of the film thickness in the EHD lubrication between the rollers can be compensated by the use of lubricants containing additives of molecules of size. As a result the bearing performance can be improved.

Originality/value

This research paper provides a closed form of the expressions for the bearings in EHD lubrication and is studied with regard to couple stress parameter. This paper helps to manufacture better bearings.

Details

Industrial Lubrication and Tribology, vol. 59 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 April 2014

Remigiusz Michalczewski, Witold Piekoszewski, Waldemar Tuszynski and Marian Szczerek

The purpose of this paper was to explore the mechanisms of scuffing propagation of heavily loaded lubricated friction pair elements coated with low-friction WC/C coating for…

Abstract

Purpose

The purpose of this paper was to explore the mechanisms of scuffing propagation of heavily loaded lubricated friction pair elements coated with low-friction WC/C coating for various material combinations.

Design/methodology/approach

The investigations were performed for low-friction coatings WC/C (a-C:H:W) deposited by the reactive sputtering physical vapour deposition (PVD) process. Experiments were carried out using a four-ball tester with continuously increasing loads. Tests were conducted for the following four material combinations: steel/steel tribosystem (all balls uncoated); steel/coating tribosystem (one upper ball uncoated/three lower balls WC/C-coated); coating/steel tribosystem (one upper ball WC/C-coated/three lower balls uncoated); and coating/coating tribosystem (all balls WC/C-coated).

Findings

The better scuffing resistance is achieved by coating only one element (coating/steel tribosystem) than all elements (coating/coating tribosystem). The description of scuffing propagation for all investigated tribosystems was done. The high scuffing resistance of the coating/steel tribosystem resulted from reducing the adhesion between rubbing surfaces due to low chemical affinity (similarities) between the steel and the coating material and the presence of solid lubricant in the friction zone.

Practical implications

In all cases, when a coating is applied, an increase in scuffing resistance is observed. However, it is better to coat only one element than all. Furthermore, the scuffing resistance for the coating/steel tribosystem is significantly higher than for the steel/coating tribosystem.

Originality/value

The main value of this paper is description of scuffing propagation and revealing the new aspects in application of low-friction WC/C coating for heavily loaded lubricated friction pair elements. The overlapping ratio has been defined as an important factor influencing the scuffing resistance of the coated tribosystems.

Details

Industrial Lubrication and Tribology, vol. 66 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 1000