Search results

1 – 10 of over 13000
Article
Publication date: 13 March 2017

Chang-Guang Zhou, Yi Ou, Hu-Tian Feng and Zeng-Tao Chen

This paper aims to examine the precision loss of ball screw raceway under different operating conditions and geometry parameters.

Abstract

Purpose

This paper aims to examine the precision loss of ball screw raceway under different operating conditions and geometry parameters.

Design/methodology/approach

Based on a new coefficient K’ introduced especially for ball screws to reflect the actual contact condition, the modified Archard theory is applied to ball screws to obtain wear volume of the ball-screw contacts. Thus, the axial precision loss can be defined as the ratio of the wear volume to the contact area. Meanwhile, a novel running bench and a precision-measuring system of ball screws are conducted. Precision variation is obtained and analyzed during the whole life running test, which agrees well with the theoretical values calculated in this paper.

Findings

For a given rotational speed, the increasing rate of the precision loss rate is high at low axial load and then becomes small with the increasing axial load, whereas for a given axial load, the precision loss rate is proportional to the rotational speed. Besides, the precision loss rate is reduced with the increasing contact angle between a ball and the screw raceway, and is proportional to the helix angle when the angle changes from 1 to 10 degrees.

Research limitations/implications

The rotational speed used in this experiment is low and the ball screw is of no-load type, although results calculated by the model and Wei’s model seem close when the axial load is high, whether the model built in the paper is applicable to the condition of high rotational speed and preload still needs to be verified in the future work.

Practical implications

This study provides an accurate model to predict the precision loss of the screw raceway and estimate the remaining life of ball screws, which is significant for better performance of ball screws as well as the computer numerical control machine tools.

Originality/value

Previous studies on the wear of ball screws mainly focused on the drag torque analysis and mechanical efficiency estimation, and the experiment to verify their theoretical analysis was almost all limited to the test of drag torque or axial rigidity, which is neither sufficient nor persuasive. However, in this paper, the authors proposed a comprehensive wear prediction model which combines the modified Archard wear theory, Hertz contact theory and kinematic theory of ball screws. To the best of the authors’ knowledge, this kind of study has never been reported in the literature. In addition, for the lack of the test bench and high cost of the experiment, the whole life operation test, which is designed and conducted to confirm the model in this paper, has never been reported in literature either.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 February 2009

Rambabu Arji, D.K. Dwivedi and S.R. Gupta

The paper's aim is to investigate the sand slurry erosive wear behaviour of Ni‐Cr‐Si‐B coating deposited on mild steel by flame spraying process under different test conditions.

Abstract

Purpose

The paper's aim is to investigate the sand slurry erosive wear behaviour of Ni‐Cr‐Si‐B coating deposited on mild steel by flame spraying process under different test conditions.

Design/methodology/approach

Flame sprayed coatings of Ni‐Cr‐Si‐B were developed on mild steel substrate The slurry pot tester was used to evaluate wear behaviour of the coating and mild steel. The erosive wear test was conducted using 20 and 40 per cent silica sand slurry at three rotational speeds (600, 800 and 1,000 rpm).

Findings

Slurry erosive wear of the coating showed that in case of 20 per cent silica sand slurry weight loss increases with increase in rotational speed from 600 to 1,000 rpm while in case of 40 per cent silica sand slurry weight loss first increases with increase in rotational speed from 600 to 800 rpm followed by marginal decrease in weight loss with further increase in rotational speed from 800 to 1,000 rpm. Increase in wear resistance due to thermal spray coating of Ni base alloy on mild steel was quantified as wear ratio (weight loss of mild steel and that of coating under identical erosion test conditions). Wear ratio for Ni‐Cr‐Si‐B coating was found in range of 1.4‐2.8 under different test conditions. The microstructure and microhardness study of coating has been reported and attempts have been to discuss wear behaviour in light of microstructure and microhardness. Scanning electron microscope (SEM) study of wear surface showed that loss of material from the coating surface takes place by indentation, crater formation and lip formation and its fracture.

Practical implications

It would assist in estimating the erosion wear performance of flame sprayed Ni‐Cr coatings and their affects of wear resistance.

Originality/value

Erosion wear of flame sprayed coatings in sand slurry media medium is substantiated by extensive SEM study.

Details

Industrial Lubrication and Tribology, vol. 61 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 December 2022

Jingyu Cao, Jiusheng Bao, Yan Yin, Wang Yao, Tonggang Liu and Ting Cao

To avoid braking accidents caused by excessive wear of brake pad, this study aims to achieve online prediction of brake pad wear life (BPWL).

Abstract

Purpose

To avoid braking accidents caused by excessive wear of brake pad, this study aims to achieve online prediction of brake pad wear life (BPWL).

Design/methodology/approach

A simulated braking test bench for automobile disc brake was used. The correlation and mechanism between the three braking condition parameters of initial braking speed, braking pressure and initial braking temperature and the tribological performance were analyzed. The different artificial neural network (ANN) models of wear loss were discussed. Genetic algorithm was used to optimize the ANN model. The structure scheme of the online prediction system of BPWL was discussed and completed.

Findings

The results showed that the braking conditions were positively correlated with the wear loss, but negatively correlated with the friction coefficient. The prediction accuracy of back propagation (BP) ANN model was higher. The model was optimized by genetic algorithm, and the average deviation of prediction results was 4.67%. By constructing the online monitoring system of automobile braking conditions, the online prediction of BPWL based on the ANN model could be realized.

Originality/value

The research results not only have important theoretical significance for the study of BPWL but also have practical value for guiding the maintenance and replacement of automobile brake pads and avoiding the occurrence of braking accidents.

Details

Industrial Lubrication and Tribology, vol. 75 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 May 2024

Yinghong Li, Wei Tan, Wenjie Pei and Guorui Zhu

The purpose of this paper is to investigate the effect of NaCl solution with different concentrations on impact-sliding fretting corrosion behavior of Inconel 690TT steam…

Abstract

Purpose

The purpose of this paper is to investigate the effect of NaCl solution with different concentrations on impact-sliding fretting corrosion behavior of Inconel 690TT steam generator heat transfer tubes.

Design/methodology/approach

The optical 3D profiler was used to measure the wear profile and calculated the wear volume. Corrosion behavior was studied using open circuit potential monitoring and potentiodynamic polarization testing. The morphologies and elemental distributions of wear scars were analyzed using scanning electron microscopy and energy-dispersive spectroscopy. The synergism of wear and corrosion was analyzed according to the ASTM G119 standard.

Findings

The corrosion tendency reflected by OCP and the corrosion current calculated by Tafel both increased with the increase of NaCl concentration. The total volume loss of the material increased with concentration, and it was known from the synergism that the volume loss caused by corrosion-enhanced wear accounted for the largest proportion, while the wear-enhanced corrosion also made a greater contribution to volume loss than tangential fretting corrosion. Through the analysis of the material morphologies and synergism of wear and corrosion, the damage mechanism was elucidated.

Originality/value

The research findings can provide reference for impact-sliding fretting corrosion behavior of Inconel 690TT heat transfer tubes in NaCl solution with different concentrations.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 February 2014

Subhash Chandra Sharma and Doug Hargreaves

Ideally, there is no wear in hydrodynamic lubrication regime. A small amount of wear occurs during start and stop of the machines and the amount of wear is so small that it is…

Abstract

Purpose

Ideally, there is no wear in hydrodynamic lubrication regime. A small amount of wear occurs during start and stop of the machines and the amount of wear is so small that it is difficult to measure with accuracy. Various wear measuring techniques have been used where out-of-roundness was found to be the most reliable method of measuring small wear quantities in journal bearings. This technique was further developed to achieve higher accuracy in measuring small wear quantities. The method proved to be reliable as well as inexpensive. The paper aims to discuss these issues.

Design/methodology/approach

In an experimental study, the effect of antiwear additives was studied on journal bearings lubricated with oil containing solid contaminants. The test duration was too long and the wear quantities achieved were too small. To minimise the test duration, short tests of about 90 min duration were conducted and wear was measured recording changes in variety of parameters related to weight, geometry and wear debris. The out-of-roundness was found to be the most effective method. This method was further refined by enlarging the out-of-roundness traces on a photocopier. The method was proved to be reliable and inexpensive.

Findings

Study revealed that the most commonly used wear measurement techniques such as weight loss, roughness changes and change in particle count were not adequate for measuring small wear quantities in journal bearings. Out-of-roundness method with some refinements was found to be one of the most reliable methods for measuring small wear quantities in journal bearings working in hydrodynamic lubrication regime. By enlarging the out-of-roundness traces and determining the worn area of the bearing cross-section, weight loss in bearings was calculated, which was repeatable and reliable.

Research limitations/implications

This research is a basic in nature where a rudimentary solution has been developed for measuring small wear quantities in rotary devices such as journal bearings. The method requires enlarging traces on a photocopier and determining the shape of the worn area on an out-of-roundness trace on a transparency, which is a simple but a crude method. This may require an automated procedure to determine the weight loss from the out-of-roundness traces directly. This method can be very useful in reducing test duration and measuring wear quantities with higher precision in situations where wear quantities are very small.

Practical implications

This research provides a reliable method of measuring wear of circular geometry. The Talyrond equipment used for measuring the change in out-of-roundness due to wear of bearings indicates that this equipment has high potential to be used as a wear measuring device also. Measurement of weight loss from the traces is an enhanced capability of this equipment and this research may lead to the development of a modified version of Talyrond type of equipment for wear measurements in circular machine components.

Originality/value

Wear measurement in hydrodynamic bearings requires long duration tests to achieve adequate wear quantities. Out-of-roundness is one of the geometrical parameters that changes with progression of wear in a circular shape components. Thus, out-of-roundness is found to be an effective wear measuring parameter that relates to change in geometry. Method of increasing the sensitivity and enlargement of out-of-roundness traces is original work through which area of worn cross-section can be determined and weight loss can be derived for materials of known density with higher precision.

Details

Industrial Lubrication and Tribology, vol. 66 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 December 2021

Recep Demirsöz, Mehmet Erdi Korkmaz, Munish Kumar Gupta, Alberto Garcia Collado and Grzegorz M. Krolczyk

The main purpose of this work is to explore the erosion wear characteristics of additively manufactured aluminium alloy. Additive manufacturing (AM), also known as…

Abstract

Purpose

The main purpose of this work is to explore the erosion wear characteristics of additively manufactured aluminium alloy. Additive manufacturing (AM), also known as three-dimensional (3D) manufacturing, is the process of manufacturing a part designed in a computer environment using different types of materials such as plastic, ceramic, metal or composite. Similar to other materials, aluminum alloys are also exposed to various wear types during operation. Production efficiency needs to be aware of its reactions to wearing mechanisms.

Design/methodology/approach

In this study, quartz sands (SiO2) assisted with oxide ceramics were used in the slurry erosion test setup and its abrasiveness on the AlSi10Mg aluminum alloy material produced by the 3D printer as selective laser melting (SLM) technology was investigated. Quartz was sieved with an average particle size of 302.5 µm, and a slurry environment containing 5, 10 and 15% quartz by weight was prepared. The experiments were carried out at the velocity of 1.88 (250 rpm), 3.76 (500 rpm) and 5.64 m/s (750 rpm) and the impact angles 15, 45 and 75°.

Findings

With these experimental studies, it has been determined that the abrasiveness of quartz sand prepared in certain particle sizes is directly related to the particle concentration and particle speed, and that the wear increases with the increase of the concentration and rotational speed. Also, the variation of weight loss and surface roughness of the alloy was investigated after different wear conditions. Surface roughness values at 750 rpm speed, 10% concentration and 75° impingement angle are 0.32 and 0.38 µm for 0 and 90° samples, respectively, with a difference of approximately 18%. Moreover, concerning a sample produced at 0°, the weight loss at 250 rpm at 10% concentration and 45° particle impact angle is 32.8 mg, while the weight loss at 500 rpm 44.4 mg, and weight loss at 750 rpm is 104 mg. Besides, the morphological structures of eroded surfaces were examined using the scanning electron microscope to understand the wear mechanisms.

Originality/value

The researchers verified that this specific coating condition increases the slurry wear resistance of the mentioned steel. There are many studies about slurry wear tests; however, there is no study in the literature about the quartz sand (SiO2) assisted slurry-erosive wear of AlSi10Mg alloy produced with AM by using SLM technology. This study is needed to fill this gap in the literature and to examine the erosive wear capability of this current material in different environments. The novelty of the study is the use of SiO2 quartz sands assisted by oxide ceramics in different concentrations for the slurry erosion test setup and the investigations on erosive wear resistance of AlSi10Mg alloy manufactured by AM.

Details

Rapid Prototyping Journal, vol. 28 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 September 2015

Lin Ba, Zhenpeng He, Lingyan Guo, Young Chiang, Guichang Zhang and Xing Lu

The purpose of this paper is to improve the environment and save energy, friction reduction, lower oil consumption and emissions demand that are the chief objectives of the…

Abstract

Purpose

The purpose of this paper is to improve the environment and save energy, friction reduction, lower oil consumption and emissions demand that are the chief objectives of the automotive industry. The piston system is the largest frictional loss source, which accounts for about 40 per cent of the total frictional loss in engine. In this paper, the reciprocating tribometer, which is updated, was used to evaluate the friction and wear performances.

Design/methodology/approach

An alternate method is introduced to investigate the effect of reciprocating speed, normal load, oil pump speed and ring sample and oil temperature on friction coefficient with the ring/liner of a typical inline diesel engine. The orthogonal experiment is designed to identify the factors that dominate wear behavior. To understand the correlations between friction coefficients and wear well, different friction coefficient results were compared and explained by oil film build-up and asperity contact theory, such as the friction coefficient over a long period and averaged the friction coefficient over one revolution.

Findings

The friction coefficient changes little but fluctuates with a small amplitude in the stable stage. The sudden change of frequency, load and stroke will lead to the oil film rupture. The identification for the factors that dominates the wear loss is ranged as F (ring sample) > , E (oil sample) > , B (stroke) > , D (temperature) > , A (load) > , G (liner) > and C (frequency).

Originality/value

This paper develops and verifies a methodology capable of mimicking the real engine behavior at boundary and mixed lubrication regimes which can minimize frictional losses, wear, reduce much work for the experiment and reduce the cost. The originality of the work is well qualified, as very few papers on a similar analysis have been published, such as: The friction coefficient values fluctuating in the whole stage may be caused by the vibration of the system; suddenly, boundary alternation may help the oil film to form the lubrication; and weight loss mainly comes from the contribution of the friction coefficient value fluctuation. The paper also found that the statistics can gain more information from less experiment time based on a design of experiment.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 July 2022

Risheng Long, Qiang Ma, Zhihao Jin, Yimin Zhang, Hui Han, Shaoni Sun and Xuanying Du

The purpose of this paper is to report the tribological behavior of dimples textured rolling element bearings (REBs) under variable load and starved lubrication.

Abstract

Purpose

The purpose of this paper is to report the tribological behavior of dimples textured rolling element bearings (REBs) under variable load and starved lubrication.

Design/methodology/approach

The pattern parameters include line-diameter of dimples (200 µm, 250 µm, 300 µm), depth of dimples (10 µm, 20 µm, 30 µm). Dimple patterns were prepared on the raceways of the shaft washers of cylindrical roller thrust bearings (CRTBs). A vertical wear test rig was used to obtain their coefficients of friction (COFs) under stepped load (1200–6000 N, with a manually increase of 1200 N every 3600 s) and starved lubrication. The wear losses and worn surfaces were characterized. The tribological performance between stepped load and fixed load (4000 N) was compared. The influence mechanism of dimples on the friction and wear properties of CRTBs under stepped load and starved lubrication was also discussed.

Findings

Compared with the data of smooth ones, the average COFs of the dimples textured bearings are almost all reduced under stepped load and starved lubrication, while their mass losses almost all get higher. The depth−diameter ratio and the effective volume coefficient of dimples are the important factors. In this work, compared with the smooth group, when the line-diameter of dimple is 250 µm and the depth is 20 µm, i.e. the depth−diameter ratio is 0.08, its average COF is reduced by 46.8% and its mass loss is reduced by about 7%, showing wonderful friction-reducing effect and good wear resistance.

Originality/value

This work can provide a reference for the raceway design of REBs.

Details

Industrial Lubrication and Tribology, vol. 74 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 March 2017

Gaofeng Han, Pengfei Jiang, Jianzhang Wang and Fengyuan Yan

This report aims to study the influence of applied potentials on the corrosion-wear behavior of 316L stainless steel (SS) in artificial seawater.

Abstract

Purpose

This report aims to study the influence of applied potentials on the corrosion-wear behavior of 316L stainless steel (SS) in artificial seawater.

Design/methodology/approach

In this study, wear-corrosion behavior of 316L SS had been studied under different applied potentials in artificial seawater by using a reformed pin-on-disc test rig. The applied potentials were selected ranging from –1.2 to 0.3 V (vs Ag/AgCl). The friction coefficient, mass loss rate and current density were determined.

Findings

It was indicated that mass loss was determined by the combined effect of mechanical wear and chemical corrosion. The wear-corrosion process was synergistic effects dominate while mechanical wear contributed the major material mass loss.

Practical implications

The results helped us to choose the appropriate metals for application under the specified environment.

Originality/value

The main originality of this research is to reveal the corrosion-wear behavior of 316L SS under different potentials, which would help us to understand different states of 316L SS under different corrosion environments.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 March 2008

Ugur Ozsarac and Salim Aslanlar

The aim of this study is to calculate the coefficient of friction of wheel/rail interface in both water lubrication and dry friction conditions.

1089

Abstract

Purpose

The aim of this study is to calculate the coefficient of friction of wheel/rail interface in both water lubrication and dry friction conditions.

Design/methodology/approach

Specimens taken from wheel and rail used in railway transport were exposed to pin‐on‐disc wear testing with 10, 20, 30 and 40 N loads. The disc took the place of the rail and the pin that of the wheel in wear tests, and rain water was fed to the disc/pin interface with a three drops/min speed in wet friction conditions. The coefficient of friction and weight loss values of specimens were determined and types of wear mechanism were characterized.

Findings

It was observed that the friction coefficient decreased in wet sliding experiments, so smaller values were calculated in wet friction conditions than those of dry friction conditions for wheel specimens. However, this decrease was more drastic for rail specimens. Weight and volumetric loss values of rail materials were lower than those of wheel samples.

Originality/value

This study investigates the wet and dry sliding wear characteristics of train wheel‐rail materials.

Details

Industrial Lubrication and Tribology, vol. 60 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 13000