Search results

1 – 10 of over 4000
Article
Publication date: 29 January 2024

Ashok K. Barik, Swetapadma Rout, Jnana Ranjan Senapati and M.M. Awad

This paper aims at studying numerically the entropy generation of nanofluid flowing over an inclined sheet in the presence of external magnetic field, heat source/sink, chemical…

Abstract

Purpose

This paper aims at studying numerically the entropy generation of nanofluid flowing over an inclined sheet in the presence of external magnetic field, heat source/sink, chemical reaction along with slip boundary conditions imposed on an impermeable wall.

Design/methodology/approach

A suitable similarity transformation technique has been used to convert the coupled nonlinear partial differential equations to ordinary differential equations (ODEs). The ODEs are then solved simultaneously using the finite difference method implemented through an in-house computer program. The effects of different controlling parameters such as magnetic parameter, radiation parameter, Brownian motion parameter, thermophoresis parameter, chemical reaction parameter, Reynolds number, Brinkmann number, Prandtl number, velocity slip parameter, temperature slip parameter and the concentration slip parameter on the entropy generation and Bejan number have been discussed comprehensively through the relevant physical insights for the first time.

Findings

The relative strengths of the irreversibilities due to heat transfer, fluid friction and the mass diffusion arising due to the change in each of the controlling variables have been delineated both in the near-wall and far-away-wall regions, which may be helpful for a better understanding of the thermo-fluid dynamics of nanofluid in boundary layer flows. The numerical results obtained from the present study have also been validated with results published in open literature.

Originality/value

The effects of different controlling parameters such as magnetic parameter, radiation parameter, Brownian motion parameter, thermophoresis parameter, chemical reaction parameter, Reynolds number, Brinkmann number, Prandtl number, velocity slip parameter, temperature slip parameter and the concentration slip parameter on the entropy generation and Bejan number have been discussed comprehensively through the relevant physical insights for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 August 2022

Juan Guo, Yanfeng Han, Shouan Chen, Jianlin Cai and Haiming Dai

This paper aims to identify the role of the wall slip on the dynamic characteristics of the multi-groove water-lubricated bearing considering rough contact, including stiffness…

Abstract

Purpose

This paper aims to identify the role of the wall slip on the dynamic characteristics of the multi-groove water-lubricated bearing considering rough contact, including stiffness and damping coefficients of the water film and contact stiffness coefficient of the asperity contact.

Design/methodology/approach

The modified perturbed average Reynolds equations with the wall slip are derived, and the calculated perturbed hydrodynamic pressures are integrated to obtain the stiffness and damping coefficients of the water film. The elastic-plastic contact model of Kogut and Etsion is used to determine the contact stiffness coefficient.

Findings

Numerical results reveal that the wall slip has the more significant impact on the water film stiffness coefficients compared with the damping and contact stiffness coefficients. When the slip angle lies in a reasonable range, the lubrication performance can be effectively improved, especially in the mixed lubrication condition. In addition, it is worth emphasizing that the abrupt change of the water film stiffness coefficients occurs at the region II (pressure zone) in this study.

Originality/value

The influence mechanism of the wall slip on the dynamic characteristics of the water-lubricated bearing considering rough contact is first revealed.

Details

Industrial Lubrication and Tribology, vol. 74 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 October 2023

Mohammad Saeid Aghighi, Christel Metivier and Sajad Fakhri

According to the research, viscoplastic fluids are sensitive to slipping. The purpose of this study is to determine whether slip affects the Rayleigh–Bénard convection of…

Abstract

Purpose

According to the research, viscoplastic fluids are sensitive to slipping. The purpose of this study is to determine whether slip affects the Rayleigh–Bénard convection of viscoplastic fluids in cavities and, if so, under what conditions.

Design/methodology/approach

The wall slip was evaluated using a model created for viscoplastic (Bingham) fluids. The coupled conservation equations were solved numerically using the finite element method. Simulations were performed for various parameters: the Rayleigh number, yield number, slip yield number and friction number.

Findings

Wall slip determines two essential yield stresses: a specific yield stress value beyond which wall slippage is impossible (S_Yc); and a maximum yield stress beyond which convective flow is impossible (Y_c). At low Rayleigh numbers, Y_c is smaller than S_Yc. Hence, the flow attained a stable (conduction) condition before achieving the no-slip condition. However, for more significant Rayleigh numbers Y_c exceeded S_Yc. Thus, the flow will slip at low yield numbers while remaining no-slip at high yield numbers. The possibility of slipping on the wall increases the buoyancy force, facilitating the onset of Rayleigh–Bénard convection.

Originality/value

An essential aspect of this study lies in its comprehensive examination of the effect of slippage on the natural convection flow of viscoplastic materials within a cavity, which has not been previously investigated. This research contributes to a new understanding of the viscoplastic fluid behavior resulting from slipping.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 August 2011

Yvonne Stokes and Graham Carey

The purpose of this paper is to extend the penalty concept to treat partial slip, free surface, contact and related boundary conditions in viscous flow simulation.

546

Abstract

Purpose

The purpose of this paper is to extend the penalty concept to treat partial slip, free surface, contact and related boundary conditions in viscous flow simulation.

Design/methodology/approach

The penalty partial‐slip formulation is analysed and related to the classical Navier slip condition. The same penalty scheme also allows partial penetration through a boundary, hence the implementation of porous wall boundaries. The finite element method is used for investigating and interpreting penalty approaches to boundary conditions.

Findings

The generalised penalty approach is verified by means of a novel variant of the circular‐Couette flow problem, having partial slip on one of the cylindrical boundaries, for which an analytic solution is derived. Further verificationis provided by consideration of viscous flow over a sphere with partial slip on the surface, and comparison of numerical and classical solutions. Numerical studies illustrate the versatility of the approach.

Research limitations/implications

The penalty approach is applied to some different boundaries: partial slip and partial penetration with no/full slip/penetration as limiting cases; free surface; space‐ and time‐varying boundary conditions which allow progressive contact over time. Application is made to curved and inclined boundaries. Sensitivity of flow to penalty parameters is an avenue for continued research, as is application of the penalty approach for non‐Newtonian flows.

Originality/value

This is the first work to show the relation between penalty formulation of boundary conditions and physical boundary conditions. It provides a method that overcomes past difficulties in implementing partial slip on boundaries of general shape, and which handles progressive contact. It also provides useful benchmark problems for future studies.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 April 2015

Qiyin Lin, Zhengying Wei, Ning Wang and Wei Chen

The purpose of this paper is to study the influence of large-area texture/slip surface, especially the area and position of large-area texture surface on journal bearing, and…

1630

Abstract

Purpose

The purpose of this paper is to study the influence of large-area texture/slip surface, especially the area and position of large-area texture surface on journal bearing, and improve the tribological performances of journal bearing.

Design/methodology/approach

A modified texture/slip numerical boundary condition with double parameters is presented and is applied onto the region where surface textures locate to represent the impact of actual texture/slip surface. A phase change condition is used to analyze cavitation phenomena.

Findings

The global/cumulative texture effect can be represented by applying texture/slip condition onto the region where it locates. The area and position of texture/slip surface would significantly affect the cavitation and load-carrying capacity. Texture/slip surface would not affect the pressure and load-carrying capacity when it locates at cavitation zone. The effect of texture/slip surface on load-carrying capacity would be beneficial if it locates at the pressure rise region, but its effect would be adverse if it locates at the pressure drop region. Well-designed texture/slip surface can improve tribological performances.

Originality/value

The developed texture/slip boundary condition can be a suitable and useful tool to analyze the effect of large-area texture/slip surface and especially to optimize the area and position of large-area texture surface. This approach can be complementary to conventional approach which is used to analyze the influence of textures’ real configurations and parameters.

Details

Industrial Lubrication and Tribology, vol. 67 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 January 2012

R. Ellahi and M. Hameed

The purpose of this paper is to study the effects of nonlinear partial slip on the walls for steady flow and heat transfer of an incompressible, thermodynamically compatible third…

Abstract

Purpose

The purpose of this paper is to study the effects of nonlinear partial slip on the walls for steady flow and heat transfer of an incompressible, thermodynamically compatible third grade fluid in a channel. The principal question the authors address in this paper is in regard to the applicability of the no‐slip condition at a solid‐liquid boundary. The authors present the effects of slip, magnetohydrodynamics (MHD) and heat transfer for the plane Couette, plane Poiseuille and plane Couette‐Poiseuille flows in a homogeneous and thermodynamically compatible third grade fluid. The problem of a non‐Newtonian plane Couette flow, fully developed plane Poiseuille flow and Couette‐Poiseuille flow are investigated.

Design/methodology/approach

The present investigation is an attempt to study the effects of nonlinear partial slip on the walls for steady flow and heat transfer of an incompressible, thermodynamically compatible third grade fluid in a channel. A very effective and higher order numerical scheme is used to solve the resulting system of nonlinear differential equations with nonlinear boundary conditions. Numerical solutions are obtained by solving nonlinear ordinary differential equations using Chebyshev spectral method.

Findings

Due to the nonlinear and highly complicated nature of the governing equations and boundary conditions, finding an analytical or numerical solution is not easy. The authors obtained numerical solutions of the coupled nonlinear ordinary differential equations with nonlinear boundary conditions using higher order Chebyshev spectral collocation method. Spectral methods are proven to offer a superior intrinsic accuracy for derivative calculations.

Originality/value

To the best of the authors' knowledge, no such analysis is available in the literature which can describe the heat transfer, MHD and slip effects simultaneously on the flows of the non‐Newtonian fluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 November 2020

Yun-lei Wang, Jiu-hui Wu, Zhen-tao Li and Lu-shuai Xu

The purpose of this paper is to investigate the effect of slip position on the performance of liquid film seal.

Abstract

Purpose

The purpose of this paper is to investigate the effect of slip position on the performance of liquid film seal.

Design/methodology/approach

A mathematical model of liquid film seal with slip/no-slip surface was established based on the Navier slip model and JFO boundary condition. Liquid film governing equation was discretized by the finite difference method and solved by the SOR relaxation iterative algorithm and the effects of slip position on sealing performance are discussed.

Findings

The results indicate that boundary slip plays an important role in the overall performance of a seal and a reasonable arrangement of slip position can improve the steady-state performance of liquid film seal.

Originality/value

Based on the mathematical model, the optimal parameters for liquid film seal with boundary slip at groove are obtained. The results presented in this study are expected to provide a theoretical basis to improve the design method of liquid film seal.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2020-0082/

Details

Industrial Lubrication and Tribology, vol. 73 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 June 2020

Naveed Imran, Maryiam Javed, Muhammad Sohail, S. Farooq and Mubashir Qayyum

Naturally, all the materials are not viscous (i.e. milk, mayonnaise, blood, vaccines, syrups, cosmetics, oil reservoirs, paints, etc.). Here present analysis focuses on the usage…

Abstract

Purpose

Naturally, all the materials are not viscous (i.e. milk, mayonnaise, blood, vaccines, syrups, cosmetics, oil reservoirs, paints, etc.). Here present analysis focuses on the usage of non-Newtonian fluid rheological properties enhancing, damping tools, protection apparatus individuals and in various distinct mechanical procedures. Industrial applications of non-Newtonian liquids include minimum friction, reduction in oil-pipeline friction, scale-up, flow tracers and in several others. The peristaltic mechanism is used as a non-Newtonian material carrier here. This mechanism occurs because of continuous symmetrical and asymmetrical propulsion of smooth channel walls. Peristalsis is a very significant mechanism for carrying drugs and other materials during sensitive diseases treatments.

Design/methodology/approach

Keeping in mind the considered problem assumptions (Rabinowitsch fluid model, thermal Grashof number, Prandtl number, density Grashof number, wall properties, etc.), it is found that the modeled equations are coupled and nonlinear. Thus here, analytical results are quite challenging to acquire and very limited to extremely venerated circumstances unsettled to their nonlinearity. Hence various developments found in computing proficiencies, numerical procedures that provides accurate, stable and satisfying solutions for non-Newtonian material flows exclusively in complex dimensions play a significant role. Here BVP4C numerical technique is developed to evaluate the nonlinear coupled system of equations with appropriate boundary constraints.

Findings

Due to convectively heated surface fluid between the walls having a small temperature. Sherwood and Nusselt numbers both deduce for fixed radiation values and different Rabinowitsch fluid quantity. Skin friction is maximum in the case of Newtonian, while minimum in case of dilatant model and pseudoplastic models. The influence of numerous parameters associated with flow problems such as thermal Grashof number, density Grashof number, Hartman number, Brownian motion, thermophoresis motion factor and slip parameters are also explored in detail and plotted for concentration profile, temperature distribution and velocity. From this analysis, it is concluded that velocity escalates for larger

Originality/value

The work reported in this manuscript has not been investigated so far by any researcher.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 May 2020

Mustapha Mechalikh, Ibrahim Zidane, Abdessoufi Benhamou, Hamid Zaidi and Miloud Tahar Abbes

After more than a century of agreement with the postulate of non-slip condition (adhesion to the wall), the study of fluid-solid boundary conditions has shown renewed interest…

Abstract

Purpose

After more than a century of agreement with the postulate of non-slip condition (adhesion to the wall), the study of fluid-solid boundary conditions has shown renewed interest over the past two decades. Although numerous studies have not yet been arrived to a complete description of slip phenomena, however, it appears that the influence of wetting and/or surface roughness results in a weak interaction between fluid and solid; thus, the presence of the slip phenomenon is observed at the fluid-solid interface. The purpose of this paper is to highlight the presence of the slip phenomenon at the lubricated piston skirt-cylinder contact.

Design/methodology/approach

For this proposal, a modified Reynolds equation and operating characteristics are determined by taking into account the slip conditions at the interface between oil-film and entire cylinder surface.

Findings

The findings indicate that the operating characteristics are strongly influenced when the slip conditions are taken into account at the interface between oil-film and cylinder surface. The friction force and dissipated power might be reduced to improve diesel engine performances.

Originality/value

Various research studies have been conducted to model the slip phenomenon in different lubricated contacts over the past two decades. However, there are no studies available concerning the piston-cylinder system.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0483/

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 April 2019

Zhenpeng Wu, Xianzhong Ding, Liangcai Zeng, Xiaolan Chen and Kuisheng Chen

This paper aims to use the method of curve splicing to combine the slip zone and the no-slip zone to further improve the lubrication performance of the liquid film. The…

Abstract

Purpose

This paper aims to use the method of curve splicing to combine the slip zone and the no-slip zone to further improve the lubrication performance of the liquid film. The combination of the slip zone and the no-slip zone of an existing heterogeneous surface is still a single line stitching method so that a very large residual space at the surface of the friction pairs remains present, necessitating further improvement of the joining scheme between the slip zone and the no-slip zone in heterogeneous surfaces.

Design/methodology/approach

A set of discrete sinusoids is used as the splicing track for both the slip zone and the no-slip zone, the starting point and amplitude of the curve are introduced as the simulation variables and the effects of these variables on the bearing capacity and friction coefficient of the liquid film are comprehensively analyzed.

Findings

The results show that the method of selecting the sinusoidal curve as the slip zone and the no-slip zone trajectory, which is based on the existing method of linear stitching, can further enhance the bearing capacity and reduce the friction coefficient of the liquid film.

Originality/value

This method can further enhance the bearing capacity and reduce the friction coefficient of the liquid film.

Details

Industrial Lubrication and Tribology, vol. 71 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 4000