Books and journals Case studies Expert Briefings Open Access
Advanced search

Search results

1 – 10 of over 1000
To view the access options for this content please click here
Article
Publication date: 6 February 2017

Influences of aspect ratio and wall boundary condition on laminar Rayleigh–Bénard convection of Bingham fluids in rectangular enclosures

Sahin Yigit and Nilanjan Chakraborty

This paper aims to investigate the aspect ratio (AR; ratio of enclosure height:length) dependence of steady-state Rayleigh–Bénard convection of Bingham fluids within…

HTML
PDF (3 MB)

Abstract

Purpose

This paper aims to investigate the aspect ratio (AR; ratio of enclosure height:length) dependence of steady-state Rayleigh–Bénard convection of Bingham fluids within rectangular enclosures for both constant wall temperature and constant wall heat flux boundary conditions. A nominal Rayleigh number range 103 ≤ Ra ≤ 105 (Ra defined based on the height) for a single representative value of nominal Prandtl number (i.e. Pr = 500) has been considered for 1/4 ≤ AR ≤ 4.

Design/methodology/approach

The bi-viscosity Bingham model is used to mimic Bingham fluids for Rayleigh–Bénard convection of Bingham fluids in rectangular enclosures. The conservation equations of mass, momentum and energy have been solved in a coupled manner using the finite volume method where a second-order central differencing scheme is used for the diffusive terms and a second-order up-wind scheme is used for the convective terms. The well-known semi-implicit method for pressure-linked equations algorithm is used for the coupling of the pressure and velocity.

Findings

It has been found that buoyancy-driven flow strengthens with increasing nominal Rayleigh number Ra, but the convective transport weakens with increasing Bingham number Bn, because of additional flow resistance arising from yield stress in Bingham fluids. The relative contribution of thermal conduction (advection) to the total thermal transport strengthens (diminishes) with increasing AR for a given set of values of Ra and Pr for both Newtonian and Bingham fluids for both boundary conditions, and the thermal transport takes place purely because of conduction for tall enclosures.

Originality/value

Correlations for the mean Nusselt number Nu ¯ have been proposed for both boundary conditions for both Newtonian and Bingham fluids using scaling arguments, and the correlations have been demonstrated to predict Nu ¯ obtained from simulation data for 1/4 ≤ AR ≤ 4, 103 ≤ Ra ≤ 105 and Pr = 500.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 2
Type: Research Article
DOI: https://doi.org/10.1108/HFF-09-2015-0366
ISSN: 0961-5539

Keywords

  • Natural convection
  • Rectangular enclosure
  • Aspect ratio
  • Bingham model
  • Constant wall heat flux
  • Constant wall temperature

To view the access options for this content please click here
Article
Publication date: 3 July 2017

Aspect ratio effects in Rayleigh–Bénard convection of Herschel–Bulkley fluids

Mohammad Saeid Aghighi and Amine Ammar

The purpose of this paper is to analyze two-dimensional steady-state Rayleigh–Bénard convection within rectangular enclosures in different aspect ratios filled with yield…

HTML
PDF (6.8 MB)

Abstract

Purpose

The purpose of this paper is to analyze two-dimensional steady-state Rayleigh–Bénard convection within rectangular enclosures in different aspect ratios filled with yield stress fluids obeying the Herschel–Bulkley model.

Design/methodology/approach

In this study, a numerical method based on the finite element has been developed for analyzing two-dimensional natural convection of a Herschel–Bulkley fluid. The effects of Bingham number Bn and power law index n on heat and momentum transport have been investigated for a nominal Rayleigh number range (5 × 103 < Ra < 105), three different aspect ratios (ratio of enclosure length:height AR = 1, 2, 3) and a single representative value of nominal Prandtl number (Pr = 10).

Findings

Results show that the mean Nusselt number Nu¯ increases with increasing Rayleigh number due to strengthening of convective transport. However, with the same nominal value of Ra, the values of Nu¯ for shear thinning fluids n < 1 are greater than shear thickening fluids n > 1. The values of Nu¯ decrease with Bingham number and for large values of Bn, Nu¯ rapidly approaches unity, which indicates that heat transfer takes place principally by thermal conduction. The effects of aspect ratios have also been investigated and results show that Nu¯ increases with increasing AR due to stronger convection effects.

Originality/value

This paper presents a numerical study of Rayleigh–Bérnard flows involving Herschel–Bulkley fluids for a wide range of Rayleigh numbers, Bingham numbers and power law index based on finite element method. The effects of aspect ratio on flow and heat transfer of Herschel–Bulkley fluids are also studied.

Details

Engineering Computations, vol. 34 no. 5
Type: Research Article
DOI: https://doi.org/10.1108/EC-06-2016-0227
ISSN: 0264-4401

Keywords

  • Finite element
  • Aspect ratio
  • Herschel–Bulkley
  • Rayleigh–Bénard

To view the access options for this content please click here
Article
Publication date: 5 April 2020

Natural convection of Casson fluid in a square enclosure

Mohammad Saeid Aghighi, Christel Metivier and Hamed Masoumi

The purpose of this paper is to analyze the natural convection of a yield stress fluid in a square enclosure with differentially heated side walls. In particular, the…

HTML
PDF (1.6 MB)

Abstract

Purpose

The purpose of this paper is to analyze the natural convection of a yield stress fluid in a square enclosure with differentially heated side walls. In particular, the Casson model is considered which is a commonly used model.

Design/methodology/approach

The coupled conservation equations of mass, momentum and energy related to the two-dimensional steady-state natural convection within square enclosures are solved numerically by using the Galerkin's weighted residual finite element method with quadrilateral, eight nodes elements.

Findings

Results highlight a small degree of the shear-thinning in the Casson fluids. It is shown that the yield stress has a stabilizing effect since the convection can stop for yield stress fluids while this is not the case for Newtonian fluids. The heat transfer rate, velocity and Yc obtained with the Casson model have the smallest values compared to other viscoplastic models. Results highlight a weak dependence of Yc with the Rayleigh number: Yc∼Ra0.07. A supercritical bifurcation at the transition between the convective and the conductive regimes is found.

Originality/value

The originality of the present study concerns the comprehensive and detailed solutions of the natural convection of Casson fluids in square enclosures with differentially heated side walls. It is shown that there exists a major difference between the cases of Casson and Bingham models, and hence using the Bingham model for analyzing the viscoplastic behavior of the fluids which follow the Casson model (such as blood) may not be accurate. Finally, a correlation is proposed for the mean Nusselt number Nu¯.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
DOI: https://doi.org/10.1108/MMMS-11-2019-0192
ISSN: 1573-6105

Keywords

  • Natural convection
  • Casson model
  • Enclosure
  • Yield stress
  • Finite element method

To view the access options for this content please click here
Article
Publication date: 1 May 2001

Computational modelling of viscoplastic fluids based on a stabilised finite element method

D. Peric and S. Slijepcevic

This work is concerned with computational modelling of viscoplastic fluids. The flows considered are assumed to be incompressible, while the viscoplastic laws are obtained…

HTML
PDF (355 KB)

Abstract

This work is concerned with computational modelling of viscoplastic fluids. The flows considered are assumed to be incompressible, while the viscoplastic laws are obtained by incorporating a yield stress below which the fluid is assumed to remain non‐deformable. The Bingham fluid is chosen as a model problem and is considered in detail in the text. The finite element formulation adopted in this work is based on a version of the stabilised finite element method, known as the Galerkin/least‐squares method, originally developed by Hughes and co‐workers. This methodology allows use of low and equal order interpolation of the pressure and velocity fields, thus providing an efficient finite element framework. The Newton‐Raphson method has been chosen for solution of the incremental non‐linear problem arising through the temporal discretisation of the evolution problem. Numerical examples are provided to illustrate the main features of the described methodology.

Details

Engineering Computations, vol. 18 no. 3/4
Type: Research Article
DOI: https://doi.org/10.1108/02644400110387163
ISSN: 0264-4401

Keywords

  • Viscoplasticity
  • Galerkin technique
  • Finite element method
  • Least squares

To view the access options for this content please click here
Article
Publication date: 16 June 2010

A quasi‐Bingham model for predicting electrorheological fluid behaviour

Yulan Sun, Marc Thomas and Jacques Masounave

The purpose of this paper is to present experimental research on the behaviour of a new electrorheological fluid (ETSERF).

HTML
PDF (487 KB)

Abstract

Purpose

The purpose of this paper is to present experimental research on the behaviour of a new electrorheological fluid (ETSERF).

Design/methodology/approach

The ETSERF is a suspension based on diatomite powders dispersed in silicon oil with a surfactant. A design of experiments is conducted to investigate the effects of electric field strength, particle concentration, surfactant percentage, particle size and shear rate on the efficiency of ETSERFs. The influence of the interactions on shear stresses is analyzed by varying all the combinations of the independent variables. The dielectric properties of the ETSERF are investigated in order to explain the interactions between these independent variables. Furthermore, a quantitative relationship between the dynamic shear stresses and the independent variables is developed.

Findings

The relationship provides a very useful explanation for the contributions of each independent variable to the viscosity and yield stress.

Originality/value

A new empirical model is proposed to explain the rheological behaviour of the ER fluids with a shear‐thinning behaviour.

Details

Multidiscipline Modeling in Materials and Structures, vol. 6 no. 1
Type: Research Article
DOI: https://doi.org/10.1108/15736101011055301
ISSN: 1573-6105

Keywords

  • Fluids
  • Experimental design
  • Dielectric properties
  • Rheology
  • Shearing

To view the access options for this content please click here
Article
Publication date: 18 September 2007

A fully explicit three‐step SPH algorithm for simulation of non‐Newtonian fluid flow

S.M. Hosseini, M.T. Manzari and S.K. Hannani

This paper sets out to present a fully explicit smoothed particle hydrodynamics (SPH) method to solve non‐Newtonian fluid flow problems.

HTML
PDF (356 KB)

Abstract

Purpose

This paper sets out to present a fully explicit smoothed particle hydrodynamics (SPH) method to solve non‐Newtonian fluid flow problems.

Design/methodology/approach

The governing equations are momentum equations along with the continuity equation which are described in a Lagrangian framework. A new treatment similar to that used in Eulerian formulations is applied to viscous terms, which facilitates the implementation of various inelastic non‐Newtonian models. This approach utilizes the exact forms of the shear strain rate tensor and its second principal invariant to calculate the shear stress tensor. Three constitutive laws including power‐law, Bingham‐plastic and Herschel‐Bulkley models are studied in this work. The imposition of the incompressibility is fulfilled using a penalty‐like formulation which creates a trade‐off between the pressure and density variations. Solid walls are simulated by the boundary particles whose positions are fixed but contribute to the field variables in the same way as the fluid particles in flow field.

Findings

The performance of the proposed algorithm is assessed by solving three test cases including a non‐Newtonian dam‐break problem, flow in an annular viscometer using the aforementioned models and a mud fluid flow on a sloping bed under an overlying water. The results obtained by the proposed SPH algorithm are in close agreement with the available experimental and/or numerical data.

Research limitations/implications

In this work, only inelastic non‐Newtonian models are studied. This paper deals with 2D problems, although extension of the proposed scheme to 3D is straightforward.

Practical implications

This study shows that various types of flow problems involving fluid‐solid and fluid‐fluid interfaces can be solved using the proposed SPH method.

Originality/value

Using the proposed numerical treatment of viscous terms, a unified and consistent approach was devised to study various non‐Newtonian flow models.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 7
Type: Research Article
DOI: https://doi.org/10.1108/09615530710777976
ISSN: 0961-5539

Keywords

  • Hydrodynamics
  • Materials handling
  • Flow
  • Viscosity

To view the access options for this content please click here
Article
Publication date: 8 May 2009

The influence of magnetic hysteresis on magnetorheological fluid clutch operation

Cezary Jędryczka, Piotr Sujka and Wojciech Szeląg

The purpose of this paper is to elaborate upon the mathematical model of coupled electromagnetic, fluid dynamic and motion phenomena that will allow for investigation of…

HTML
PDF (260 KB)

Abstract

Purpose

The purpose of this paper is to elaborate upon the mathematical model of coupled electromagnetic, fluid dynamic and motion phenomena that will allow for investigation of the magnetic hysteresis influence on the axial symmetry magnetorheological fluid (MRF) clutch operation.

Design/methodology/approach

To solve the partial differential equations describing magnetic vector and fluid velocity potential distributions in axial symmetry MRF electromechanical transducers the finite‐element methods have been applied. To solve model equations in the time domain, the time stepping method have been adopted. To introduce magnetic hysteresis phenomenon to presented approach the Jiles‐Atherton model have been applied. The physical properties of MRFs have been modeled by means of the Bingham model. Owing to high nonlinearity of the considered problem to solve obtained matrix equations systems the iterative Newton‐Raphson combined with the block over relaxation method have been applied.

Findings

The proposed model of coupled phenomena and the elaborated algorithm for solving the nonlinear model equations can be successfully applied in the analysis of transients in the MRF transducers taking fluid dynamics and magnetic hysteresis into account. Comparison of the measured and calculated clutch characteristics proves the model accuracy. Moreover, it has been shown that the residual magnetic flux density of the ferromagnetic core has significant impact on both to yield stresses forming in MRFs as well as the torque in disengagement clutch operation.

Originality/value

Development of the method for analysis of transients electromagnetic and fluid flow phenomena in MRF transducers taking magnetic hysteresis, electric circuits and motion into account. The presented approach is universal and can be successfully applied in other types of MRF electromechanical transducers such as clutch, brakes, rotary and linear dampers.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 3
Type: Research Article
DOI: https://doi.org/10.1108/03321640910940963
ISSN: 0332-1649

Keywords

  • Finite element analysis
  • Electromagnetic fields
  • Fluid dynamics

To view the access options for this content please click here
Article
Publication date: 11 January 2021

Numerical analysis of flow and forced convection heat transfer of non-Newtonian fluid in a pipe based on fractional constitutive model

Ailian Chang, HongGuang Sun, K. Vafai and Erfan Kosari

This paper aims to use a fractional constitutive model with a nonlocal velocity gradient for replacing the nonlinear constitutive model to characterize its complex…

HTML
PDF (938 KB)

Abstract

Purpose

This paper aims to use a fractional constitutive model with a nonlocal velocity gradient for replacing the nonlinear constitutive model to characterize its complex rheological behavior, where non-linear characteristics exist, for example, the inherent viscous behavior of the crude oil. The feasibility and flexibility of the fractional model are tested via a case study of non-Newtonian fluid. The finite element method is non-Newtonian used to numerically solve both momentum equation and energy equation to describe the fluid flow and convection heat transfer process.

Design/methodology/approach

This paper provides a comprehensive theoretical and numerical study of flow and heat transfer of non-Newtonian fluids in a pipe based on the fractional constitutive model. Contrary to fractional order a, the rheological property of non-Newtonian fluid changes from shear-thinning to shear-thickening with the increase of power-law index n, therefore the flow and heat transfer are hindered to some extent.

Findings

This paper discusses two dimensionless parameters on flow regime and thermal patterns, including Reynolds number (Re) and Nusselt number (Nu) in evaluating the flow rate and heat transfer rate. Analysis results show that the viscosity of the non-Newtonian fluid decreases with the rheological index (order α) increasing. While large fractional (order α) corresponds to the enhancement of heat transfer capacity.

Research limitations/implications

First, it is observed that the increase of the Re results in an increase of the local Nusselt number (Nul). It means the heat transfer enhancement ratio increases with Re. Meanwhile, the increasement of the Nul indicating the enhancement in the heat transfer coefficient, produces a higher speed flow of crude oil.

Originality/value

This study presents a new numerical investigation on characteristics of steady-state pipe flow and forced convection heat transfer by using a fractional constitutive model. The influences of various non-dimensional characteristic parameters of fluid on the velocity and temperature fields are analyzed in detail.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
DOI: https://doi.org/10.1108/HFF-10-2020-0637
ISSN: 0961-5539

Keywords

  • Numerical simulation
  • Non-Newtonian fluid
  • Crude oil
  • Flow and heat transfer
  • Fractional constitutive model

To view the access options for this content please click here
Article
Publication date: 7 January 2019

Numerical investigation of aspect ratio influences on Rayleigh–Bénard convection of Bingham fluids in vertical cylindrical annuli

Sahin Yigit and Nilanjan Chakraborty

This paper aims to conduct numerical simulations to investigate steady-state laminar Rayleigh–Bénard convection of yield stress fluids obeying Bingham model in rectangular…

HTML
PDF (3.7 MB)

Abstract

Purpose

This paper aims to conduct numerical simulations to investigate steady-state laminar Rayleigh–Bénard convection of yield stress fluids obeying Bingham model in rectangular cross-sectional cylindrical annular enclosures. In this investigation, axisymmetric simulations have been carried out for nominal Rayleigh number range Ra = 103 to 105, aspect ratio range AR = 0.25 to 4 (i.e. AR = H/L where H is the enclosure height and L is the difference between outer and inner radii) and normalised inner radius range ri/L = 0 to 16 (where ri is internal cylinder radius) for a nominal representative Prandtl number Pr = 500. Both constant wall temperature (CWT) and constant wall heat flux (CWHF) boundary conditions have been considered for differentially heated horizontal walls to analyse the effects of wall boundary condition.

Design/methodology/approach

The bi-viscosity Bingham model is used to mimic Bingham fluids for Rayleigh–Bénard convection of Bingham fluids in vertical cylindrical annuli. The conservation equations of mass, momentum and energy have been solved in a coupled manner using the finite volume method where a second-order central differencing scheme is used for the diffusive terms and a second-order up-wind scheme is used for the convective terms. The well-known semi-implicit method for pressure-linked equations algorithm is used for the coupling of the pressure and velocity.

Findings

It is found that the convective transport strengthens (weakens) with an increase in Ra (AR) for both Newtonian (i.e. Bn = 0) and Bingham fluids, regardless of the boundary conditions. Moreover, the strength of convection is stronger in the CWT configuration than that is for CWHF boundary condition due to higher temperature difference between horizontal walls for both Newtonian (i.e. Bn = 0) and Bingham fluids. The mean Nusselt number Nūcy does not show a monotonic increase with increasing Ra for AR = 1 and ri/L = 4 because of the change in flow pattern (i.e. number of convection rolls/cells) in the CWT boundary condition, whereas a monotonic increase of Nūcy with increasing Ra is obtained for the CWHF configuration. In addition, Nūcy increases with increasing ri/L and asymptotically approaches the corresponding value obtained for rectangular enclosures (ri/L → ∞) for both CWT and CWHF boundary conditions for large values of ri/L. It is also found that both the flow pattern and the mean Nusselt number Nūcy are dependent on the initial conditions for Bingham fluid cases, as hysteresis is evident for AR = 1 for both CWT and CWHF boundary conditions.

Originality value

Finally, the numerical findings have been used to propose a correlation for Nūcy in the range of 0.25 ≤ ri/L ≤ 16, 0.25 ≤ AR ≤ 2 and 5 × 104 ≤ Ra ≤ 105 for the CWHF configuration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 1
Type: Research Article
DOI: https://doi.org/10.1108/HFF-03-2018-0101
ISSN: 0961-5539

Keywords

  • Non-Newtonian fluid
  • Bingham model
  • Constant wall heat flux
  • Constant wall temperature
  • Rayleigh–Bénard convection
  • Vertical cylindrical annuli

To view the access options for this content please click here
Article
Publication date: 7 January 2019

Natural convection of Bingham fluids in rectangular cross-sectional cylindrical annuli with differentially heated vertical walls

Sahin Yigit and Nilanjan Chakraborty

This paper aims to numerically analyse natural convection of yield stress fluids in rectangular cross-sectional cylindrical annular enclosures. The laminar steady-state…

HTML
PDF (4.4 MB)

Abstract

Purpose

This paper aims to numerically analyse natural convection of yield stress fluids in rectangular cross-sectional cylindrical annular enclosures. The laminar steady-state simulations have been conducted for a range of different values of normalised internal radius (ri/L 1/8 to 16, where L is the difference between outer and inner radii); aspect ratio (AR = H/L from 1/8 to 8 where H is the enclosure height); and nominal Rayleigh number (Ra from 103 to 106) for a single representative value of Prandtl number (Pr is 500).

Design/methodology/approach

The Bingham model has been used to mimic the yield stress fluid motion, and numerical simulations have been conducted for both constant wall temperature (CWT) and constant wall heat flux (CWHF) boundary conditions for the vertical side walls. The conservation equations of mass, momentum and energy have been solved in a coupled manner using the finite volume method where a second-order central differencing scheme is used for the diffusive terms and a second-order up-wind scheme is used for the convective terms. The well-known semi-implicit method for pressure-linked equations algorithm is used for the coupling of the pressure and velocity.

Findings

It is found that the mean Nusselt number based on the inner periphery Nu¯i increases (decreases) with an increase in Ra (Bn) due to augmented buoyancy (viscous) forces irrespective of the boundary condition. The ratio of convective to diffusive thermal transport increases with increasing ri/L for both Newtonian (i.e. Bn = 0) and Bingham fluids regardless of the boundary condition. Moreover, the mean Nusselt number Nu¯i normalised by the corresponding Nusselt number due to pure conductive transport (i.e. Nu¯i/(Nu¯i)cond) shows a non-monotonic trend with increasing AR in the CWT configuration for a given set of values of Ra, Pr, Li for both Newtonian (i.e. Bn = 0) and Bingham fluids, whereas Nu¯i/(Nu¯i)cond increases monotonically with increasing AR in the CWHF configuration. The influences of convective thermal transport strengthen while thermal diffusive transport weakens with increasing AR, and these competing effects are responsible for the non-monotonic Nu¯i/(Nu¯i)cond variation with AR in the CWT configuration.

Originality/value

Detailed scaling analysis is utilised to explain the observed influences of Ra, BN, ri/L and AR, which along with the simulation data has been used to propose correlations for Nu¯i.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 1
Type: Research Article
DOI: https://doi.org/10.1108/HFF-06-2017-0242
ISSN: 0961-5539

Keywords

  • Natural convection
  • Aspect ratio
  • Bingham model

Access
Only content I have access to
Only Open Access
Year
  • Last week (3)
  • Last month (15)
  • Last 3 months (42)
  • Last 6 months (85)
  • Last 12 months (151)
  • All dates (1147)
Content type
  • Article (895)
  • Book part (195)
  • Earlycite article (57)
1 – 10 of over 1000
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here