Search results

1 – 10 of over 2000
Article
Publication date: 13 October 2023

Mohammad Saeid Aghighi, Christel Metivier and Sajad Fakhri

According to the research, viscoplastic fluids are sensitive to slipping. The purpose of this study is to determine whether slip affects the Rayleigh–Bénard convection of…

Abstract

Purpose

According to the research, viscoplastic fluids are sensitive to slipping. The purpose of this study is to determine whether slip affects the Rayleigh–Bénard convection of viscoplastic fluids in cavities and, if so, under what conditions.

Design/methodology/approach

The wall slip was evaluated using a model created for viscoplastic (Bingham) fluids. The coupled conservation equations were solved numerically using the finite element method. Simulations were performed for various parameters: the Rayleigh number, yield number, slip yield number and friction number.

Findings

Wall slip determines two essential yield stresses: a specific yield stress value beyond which wall slippage is impossible (S_Yc); and a maximum yield stress beyond which convective flow is impossible (Y_c). At low Rayleigh numbers, Y_c is smaller than S_Yc. Hence, the flow attained a stable (conduction) condition before achieving the no-slip condition. However, for more significant Rayleigh numbers Y_c exceeded S_Yc. Thus, the flow will slip at low yield numbers while remaining no-slip at high yield numbers. The possibility of slipping on the wall increases the buoyancy force, facilitating the onset of Rayleigh–Bénard convection.

Originality/value

An essential aspect of this study lies in its comprehensive examination of the effect of slippage on the natural convection flow of viscoplastic materials within a cavity, which has not been previously investigated. This research contributes to a new understanding of the viscoplastic fluid behavior resulting from slipping.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 August 2022

Juan Guo, Yanfeng Han, Shouan Chen, Jianlin Cai and Haiming Dai

This paper aims to identify the role of the wall slip on the dynamic characteristics of the multi-groove water-lubricated bearing considering rough contact, including stiffness…

Abstract

Purpose

This paper aims to identify the role of the wall slip on the dynamic characteristics of the multi-groove water-lubricated bearing considering rough contact, including stiffness and damping coefficients of the water film and contact stiffness coefficient of the asperity contact.

Design/methodology/approach

The modified perturbed average Reynolds equations with the wall slip are derived, and the calculated perturbed hydrodynamic pressures are integrated to obtain the stiffness and damping coefficients of the water film. The elastic-plastic contact model of Kogut and Etsion is used to determine the contact stiffness coefficient.

Findings

Numerical results reveal that the wall slip has the more significant impact on the water film stiffness coefficients compared with the damping and contact stiffness coefficients. When the slip angle lies in a reasonable range, the lubrication performance can be effectively improved, especially in the mixed lubrication condition. In addition, it is worth emphasizing that the abrupt change of the water film stiffness coefficients occurs at the region II (pressure zone) in this study.

Originality/value

The influence mechanism of the wall slip on the dynamic characteristics of the water-lubricated bearing considering rough contact is first revealed.

Details

Industrial Lubrication and Tribology, vol. 74 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4529

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 2023

Ahed Habib and Umut Yildirim

Over the past few decades, several base isolation systems have been developed to enhance the performance of structures under extreme earthquake shaking intensities. Recently, to…

Abstract

Purpose

Over the past few decades, several base isolation systems have been developed to enhance the performance of structures under extreme earthquake shaking intensities. Recently, to achieve high energy dissipation capabilities, a new generation of multi-stage friction pendulum (FP) bearings known as the “Quintuple Friction Pendulum (QFP)” was introduced in the literature. With the help of its five effective pendula and nine operational regimes, this bearing's major benefits stem from its ability to accomplish complicated multi-stage adaptive behavior with smoothed loading and unloading when subjected to lateral forces.

Design/methodology/approach

Within the assessment context, five finite element models of reinforced concrete frames supported on QFP isolators with different properties will be developed in OpenSees. Thereafter, a set of 60 earthquakes will be analyzed using the nonlinear time history analysis approach, and the impact of each ground motion record's properties will be evaluated.

Findings

Overall, the study's findings have demonstrated that the characteristics of the isolator, combined with the type of earthquake being applied, have a substantial impact on the isolator's behavior.

Originality/value

Currently, no studies have examined the energy distribution of structural systems equipped with this type of isolation system while considering the influence of earthquake characteristics. Thus, this study is intended to extend the findings available in the literature by discussing and illustrating the distribution of strong ground motions input energy into highly nonlinear base-isolated systems that account for the bearing and superstructural materials' nonlinearity, geometric nonlinearity and leakage-prevented viscous damping nonlinearity. Besides, it investigates the influence of various earthquake characteristics on the energy dissipation of such buildings.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 March 2018

Li-Ming Chu, Jaw-Ren Lin and Cai-Wan Chang-Jian

The modified Reynolds equation for non-Newtonian lubricant is derived using the viscous adsorption theory for thin-film elastohydrodynamic lubrication (TFEHL) of circular…

Abstract

Purpose

The modified Reynolds equation for non-Newtonian lubricant is derived using the viscous adsorption theory for thin-film elastohydrodynamic lubrication (TFEHL) of circular contacts. The proposed model can reasonably calculate the phenomenon in the thin-film lubrication (TFL) unexplained by the conventional EHL model. The differences between classical EHL and TFEHL with the non-Newtonian lubricants are discussed.

Design/methodology/approach

The power-law lubricating film between the elastic surfaces is modeled in the form of three layers: two adsorption layers on each surface and one middle layer. The modified Reynolds equation with power-law fluid is derived for TFEHL of circular contacts using the viscous adsorption theory. The finite difference method and the Gauss–Seidel iteration method are used to solve the modified Reynolds equation, elasticity deformation, lubricant rheology equations and load balance equations simultaneously.

Findings

The simulation results reveal that the present model can reasonably calculate the pressure distribution, the film thickness, the velocity distribution and the average viscosity in TFL with non-Newtonian lubricants. The thickness and viscosity of the adsorption layer and the flow index significantly influence the lubrication characteristics of the contact conjunction.

Originality/value

The present model can reasonably predict the average viscosity, the turning point and the derivation (log film thickness vs log speed) phenomena in the TFEHL under constant load conditions.

Details

Industrial Lubrication and Tribology, vol. 70 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 August 2021

Pandimani, Markandeya Raju Ponnada and Yesuratnam Geddada

This study aims to present comprehensive nonlinear material modelling techniques and simulations of reinforced concrete (RC) beams subjected to short-term monotonic static load…

Abstract

Purpose

This study aims to present comprehensive nonlinear material modelling techniques and simulations of reinforced concrete (RC) beams subjected to short-term monotonic static load using the robust and reliable general-purpose finite element (FE) software ANSYS. A parametric study is carried out to analyse the flexural and ductility behaviour of RC beams under various influencing parameters.

Design/methodology/approach

To develop and validate the numerical FE models, a total of four experimentally tested simply supported RC beams are taken from the available literature and two beams are selected from each author. The concrete, steel reinforcements, bond-slip mechanism, loading and supporting plates are modelled using SOLID65, LINK180, COMBIN39 and SOLID185 elements, respectively. The validated models are then used to conduct parametric FE analysis to investigate the effect of concrete compressive strength, percentage of tensile reinforcement, compression reinforcement ratio, transverse shear reinforcement, bond-slip mechanism, concrete compressive stress-strain constitutive models, beam symmetry and varying overall depth of beam on the ultimate load-carrying capacity and ductility behaviour of RC beams.

Findings

The developed three-dimensional FE models can able to capture the load and midspan deflections at critical points, the accurate yield point of steel reinforcements, the formation of initial and progressive concrete crack patterns and the complete load-deflection curves of RC beams up to ultimate failure. From the numerical results, it can be concluded that the FE model considering the bond-slip effect with Thorenfeldt’s concrete compressive stress-strain model exhibits a better correlation with the experimental data.

Originality/value

The ultimate load and deflection results of validated FE models show a maximum deviation of less than 10% and 15%, respectively, as compared to the experimental results. The developed model is also capable of capturing concrete failure modes accurately. Overall, the FE analysis results were found quite acceptable and compared well with the experimental data at all loading stages. It is suggested that the proposed FE model is a practical and reliable tool for analyzing the flexural behaviour of RC members and can be used for performing parametric studies.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 August 2021

Pandimani, Markandeya Raju Ponnada and Yesuratnam Geddada

This paper aims to present nonlinear numerical simulations using the versatile finite element (FE) analysis tool ANSYS and theoretical analysis based on code provisions to assess…

Abstract

Purpose

This paper aims to present nonlinear numerical simulations using the versatile finite element (FE) analysis tool ANSYS and theoretical analysis based on code provisions to assess the load-carrying capacity of reinforced concrete (RC) beams under two-point monotonic static loadings.

Design/methodology/approach

Four quarter-size FE models with load and geometry symmetry conditions were constructed, the load-bearing capacity and associated mid-span deflections at critical points are verified against the full-scale experimental RC beams available in the literature. These developed FE models incorporated the tension stiffening effects and bond–slip behaviour. Theoretical analyses based on Indian standard code IS: 456–2000 and ACI 318–19 were also carried to verify the experimental and numerical predicted moments at critical loading points.

Findings

The load-deflection curves predicted through FE models exhibit closer corroboration with the experimental curves throughout the loading history. The contour plots for deflections, concrete principal stresses, reinforcement yield stresses are satisfactorily predicted by the FE models, which reveal the complete information of nonlinear behaviour of RC beams. The developed model well captured the initial and progressive crack patterns at each load increments.

Practical implications

The FE modelling is an efficient, valid and economical tool that is an alternative to the expensive experimental program and can be used to explore, analyse and fully understand the nonlinear response of RC beams under static loadings.

Originality/value

The ultimate moment capacity evaluated based on ACI 318–19 code provision show a better correlation with the experimental data as compared to the IS: 456–2000 code provision. The ultimate loads and associated centre-span deflections predicted by RN-2, RN-3, RB-12 and RB-16 FE model show a discrepancy of 1.66 and –0.49%, –4.68 and –0.60%, –9.38 and –14.53% and –4.37 and 4.21%, respectively, against the experimental results, which reveals that the developed ANSYS FE models predict consistent results and achieved a reasonable agreement with the experimental data.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 9 August 2011

Yvonne Stokes and Graham Carey

The purpose of this paper is to extend the penalty concept to treat partial slip, free surface, contact and related boundary conditions in viscous flow simulation.

542

Abstract

Purpose

The purpose of this paper is to extend the penalty concept to treat partial slip, free surface, contact and related boundary conditions in viscous flow simulation.

Design/methodology/approach

The penalty partial‐slip formulation is analysed and related to the classical Navier slip condition. The same penalty scheme also allows partial penetration through a boundary, hence the implementation of porous wall boundaries. The finite element method is used for investigating and interpreting penalty approaches to boundary conditions.

Findings

The generalised penalty approach is verified by means of a novel variant of the circular‐Couette flow problem, having partial slip on one of the cylindrical boundaries, for which an analytic solution is derived. Further verificationis provided by consideration of viscous flow over a sphere with partial slip on the surface, and comparison of numerical and classical solutions. Numerical studies illustrate the versatility of the approach.

Research limitations/implications

The penalty approach is applied to some different boundaries: partial slip and partial penetration with no/full slip/penetration as limiting cases; free surface; space‐ and time‐varying boundary conditions which allow progressive contact over time. Application is made to curved and inclined boundaries. Sensitivity of flow to penalty parameters is an avenue for continued research, as is application of the penalty approach for non‐Newtonian flows.

Originality/value

This is the first work to show the relation between penalty formulation of boundary conditions and physical boundary conditions. It provides a method that overcomes past difficulties in implementing partial slip on boundaries of general shape, and which handles progressive contact. It also provides useful benchmark problems for future studies.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 August 2015

Mark Messner, Armand Beaudoin and Robert Dodds

The purpose of this paper is to describe several novel techniques for implementing a crystal plasticity (CP) material model in a large deformation, implicit finite element…

Abstract

Purpose

The purpose of this paper is to describe several novel techniques for implementing a crystal plasticity (CP) material model in a large deformation, implicit finite element framework.

Design/methodology/approach

Starting from the key kinematic assumptions of CP, the presentation develops the necessary CP correction terms to several common objective stress rates and the consistent linearization of the stress update algorithm. Connections to models for slip system hardening are isolated from these processes.

Findings

A kinematically consistent implementation is found to require a correction to the stress update to include plastic vorticity developed by slip deformation in polycrystals. A simpler, more direct form for the algorithmic tangent is described. Several numerical examples demonstrate the capabilities and computational efficiency of the formulation.

Research limitations/implications

The implementation assumes isotropic slip system hardening. With simple modifications, the described approach extends readily to anisotropic coupled or uncoupled hardening functions.

Practical implications

The modular formulation and implementation support streamlined development of new models for slip system hardening without modifications of the stress update and algorithmic tangent computations. This implementation is available in the open-source code WARP3D.

Originality/value

In the process of developing the CP formulation, this work realized the need for corrections to the Green-Naghdi and Jaumann objective stress rates to account properly for non-zero plastic vorticity. The paper describes fully the consistent linearization of the stress update algorithm and details a new scheme to implement the model with improved efficiency.

Details

Engineering Computations, vol. 32 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 2008

Nikitin

The model of elastoplastic medium is based on the concept of slip proposed by Batdorf and Budiansky. The conditions of slip on a slip plane take into account “the local loading…

Abstract

The model of elastoplastic medium is based on the concept of slip proposed by Batdorf and Budiansky. The conditions of slip on a slip plane take into account “the local loading criterion”. Under some assumptions we succeeded in integrating the plastic shears over all possible slip planes in case of arbitrary three‐dimensional stress state and obtained an expression for the plastic strain tensor increments and the closed variant of the elastoplastic model, which turns out to be a variant of the plastic flow theory. The integration method proposed can be applied for establishing the links between local conditions and macroscopic equations, and for some other slip conditions too.

Details

Multidiscipline Modeling in Materials and Structures, vol. 4 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 2000