Search results

1 – 10 of over 9000
Article
Publication date: 25 October 2021

Philippe Gilotte, Iraj Mortazavi, Alfonso Colon de Carvajal, Stephie Edwige and Christian Navid Nayeri

The purpose of this paper is to study pressure measurement correlations, as the location of the pressure sensors should enable to capture variation of the drag force depending on…

Abstract

Purpose

The purpose of this paper is to study pressure measurement correlations, as the location of the pressure sensors should enable to capture variation of the drag force depending on the yaw angle and some geometrical modifications.

Design/methodology/approach

The present aerodynamical study, performed on a reduced scale mock-up representing a sport utility vehicle, involves both numerical and experimental investigations. Experiments performed in a wind tunnel facility deal with drag and pressure measurements related to the side wind variation. The pressure sensor locations are deduced from wall streamlines computed from large eddy simulation results on the external surfaces of the mock-up.

Findings

After validation of the drag coefficient (Cd) values computed with an aerodynamic balance, measurements should only imply pressure tap mounted on the vehicle to perform real driving emission (RDE) tests.

Originality/value

Relation presented in this paper between pressure coefficients measured on a side sensor and the drag coefficient data must enable to better quantify the drag force contribution of a ground vehicle in RDE tests.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 May 2018

Pierre Grenson and Eric Garnier

This paper aims to report the attempts for predicting “on-the-fly” flow distortion in the engine entrance plane of a highly curved S-duct from wall static pressure measurements

Abstract

Purpose

This paper aims to report the attempts for predicting “on-the-fly” flow distortion in the engine entrance plane of a highly curved S-duct from wall static pressure measurements. Such a technology would be indispensable to trigger active flow control devices to mitigate the intense flow separations which occur in specific flight conditions.

Design/methodology/approach

Evaluation of different reconstruction algorithms is performed on the basis of data extracted from a Zonal Detached Eddy Simulation (ZDES) of a well-documented S-Duct (Garnier et al., AIAA J., 2015). Contrary to RANS methods, such a hybrid approach makes unsteady distortions available, which are necessary information for reconstruction algorithm assessment.

Findings

The best reconstruction accuracy is obtained with the artificial neural network (ANN) but the improvement compared to the classical linear stochastic estimation (LSE) is minor. The different inlet distortion coefficients are not reconstructed with the same accuracy. KA2 coefficient is finally identified as the more suited for activation of the control device.

Originality/value

LSE and its second-order variant (quadratic stochastic estimation [QSE]) are applied for reconstructing instantaneous stagnation pressure in the flow field. The potential improvement of an algorithm based on an ANN is also evaluated. The statistical link between the wall sensors and 40-Kulite rake sensors are carefully discussed and the accuracy of the reconstruction of the most used distortion coefficients (DC60, RDI, CDI and KA2) is quantified for each estimation technique.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 July 2019

Yaser Javed, Mohtashim Mansoor and Irtiza Ali Shah

Pressure, being one of the key variables investigated in scientific and engineering research, requires critical and accurate measurement techniques. With the advancements in…

2214

Abstract

Purpose

Pressure, being one of the key variables investigated in scientific and engineering research, requires critical and accurate measurement techniques. With the advancements in materials and machining technologies, there is a large leap in the measurement techniques including the development of micro electromechanical systems (MEMS) sensors. These sensors are one to two orders smaller in magnitude than traditional sensors and combine electrical and mechanical components that are fabricated using integrated circuit batch-processing technologies. MEMS are finding enormous applications in many industrial fields ranging from medical to automotive, communication to electronics, chemical to aviation and many more with a potential market of billions of dollars. MEMS pressure sensors are now widely used devices owing to their intrinsic properties of small size, light weight, low cost, ease of batch fabrication and integration with an electronic circuit. This paper aims to identify and analyze the common pressure sensing techniques and discuss their uses and advantages. As per our understanding, usage of MEMS pressure sensors in the aerospace industry is quite limited due to cost constraints and indirect measurement approaches owing to the inability to locate sensors in harsh environments. The purpose of this study is to summarize the published literature for application of MEMS pressure sensors in the said field. Five broad application areas have been investigated including: propulsion/turbomachinery applications, turbulent flow diagnosis, experimentalaerodynamics, micro-flow control and unmanned aerial vehicle (UAV)/micro aerial vehicle (MAV) applications.

Design/methodology/approach

The first part of the paper deals with an introduction to MEMS pressure sensors and mathematical relations for its fabrication. The second part covers pressure sensing principles followed by the application of MEMS pressure sensors in five major fields of aerospace industry.

Findings

In this paper, various pressure sensing principles in MEMS and applications of MEMS technology in the aerospace industry have been reviewed. Five application fields have been investigated including: Propulsion/Turbomachinery applications, turbulent flow diagnosis, experimental aerodynamics, micro-flow control and UAV/MAV applications. Applications of MEMS sensors in the aerospace industry are quite limited due to requirements of very high accuracy, high reliability and harsh environment survivability. However, the potential for growth of this technology is foreseen due to inherent features of MEMS sensors’ being light weight, low cost, ease of batch fabrication and capability of integration with electric circuits. All these advantages are very relevant to the aerospace industry. This work is an endeavor to present a comprehensive review of such MEMS pressure sensors, which are used in the aerospace industry and have been reported in recent literature.

Originality/value

As per the author’s understanding, usage of MEMS pressure sensors in the aerospace industry is quite limited due to cost constraints and indirect measurement approaches owing to the inability to locate sensors in harsh environments. Present work is a prime effort in summarizing the published literature for application of MEMS pressure sensors in the said field. Five broad application areas have been investigated including: propulsion/turbomachinery applications, turbulent flow diagnosis, experimental aerodynamics, micro-flow control and UAV/MAV applications.

Details

Sensor Review, vol. 39 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 29 May 2020

Tianlun Huang, Zhiming Yang, Simian Diao, Zhigao Huang, Yun Zhang and Huamin Zhou

This study aims to investigate the effects of different surface-to-jet velocity ratios (Rsj) on the flow structure and the heat transfer of the floatation nozzle under different…

Abstract

Purpose

This study aims to investigate the effects of different surface-to-jet velocity ratios (Rsj) on the flow structure and the heat transfer of the floatation nozzle under different ratios (h/w) of the separation distance (h) to the slot width (w) and the differences of the flow structure and the heat transfer between the floatation nozzle and the slot nozzle.

Design/methodology/approach

The Nusselt number (Nu) and the pressure distribution of the floatation nozzle with a stationary wall are measured. Then the experimental results are used to validate the numerical model. Finally, a series of numerical simulations is carried out to achieve the purpose of this study.

Findings

The flow structure and heat transfer differences between the floatation nozzle and the slot nozzle are clarified. The floatation nozzle has more than 18 times the floatation ability of the unconfined slot nozzle. The Nu and pressure distributions of the floatation nozzle are experimentally measured. The effects of wall motion on the Nu and pressure distributions are identified.

Originality/value

The effects of the wall motion on the flow structure and the heat transfer of the floatation nozzle, and the differences between the floatation nozzle and the slot nozzle are first obtained. Therefore, it is valuable for engineers in engineering design of the floatation nozzle.

Details

Engineering Computations, vol. 38 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 April 2014

Mouna Lamnaouer, Alain Kassab, Eduardo Divo, Nolan Polley, Rodrigo Garza-Urquiza and Eric Petersen

An axisymmetric shock-tube model of the high-pressure shock-tube facility at the Texas A&M University has been developed. The shock tube is non-conventional with a non-uniform…

Abstract

Purpose

An axisymmetric shock-tube model of the high-pressure shock-tube facility at the Texas A&M University has been developed. The shock tube is non-conventional with a non-uniform cross-section and features a driver section with a smaller diameter than the driven section. The paper aims to discuss these issues.

Design/methodology/approach

Computations were carried out based on the finite volume approach and the AUSM+ flux-differencing scheme. The adaptive mesh refinement algorithm was applied to the time-dependent flow fields to accurately capture and resolve the shock and contact discontinuities as well as the very fine scales associated with the viscous effects. The incorporation of a conjugate heat transfer model enhanced the credibility of the results.

Findings

The shock-tube model is validated with simulation of the bifurcation phenomenon and with experimental data. The model is shown to be capable of accurately simulating the shock and expansion wave propagations and reflections as well as the flow non-uniformities behind the reflected shock wave as a result of reflected shock/boundary layer interaction or bifurcation. The pressure profiles behind the reflected shock wave agree with the experimental results.

Originality/value

This paper presents one of the first studies to model the entire flow field history of a non-uniform diameter shock tube with a conjugate heat transfer model beginning from the bursting of the diaphragm while simultaneously resolving the fine features of the reflected shock-boundary layer interaction and the post-shock region near the end-wall, at conditions useful for chemical kinetics experiments. An important discovery from this study is the possible existence of hot spots in the end-wall region that could lead to early non-homogeneous ignition events. More experimental and numerical work is needed to quantify the hot spots.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 May 2018

Yoann Eulalie, Elisabeth Fournier, Philippe Gilotte, David Holst, Shaun Johnson, Christian Navid Nayeri, Thomas Schütz and Dirk Wieser

This paper aims to present an experimental investigation of an active flow control solution mounted at rear of a sport utility vehicle (SUV) with the objective of drag reduction…

Abstract

Purpose

This paper aims to present an experimental investigation of an active flow control solution mounted at rear of a sport utility vehicle (SUV) with the objective of drag reduction, thanks to a selection of flow control parameters leading to a pressure increase on the tailgate.

Design/methodology/approach

A flow control design of experiments was conducted with a pulsed jet system mounted on the top and sides of the rear window of the vehicle. The wall pressure, instantaneous velocity and drag were measured with this prototype in a wind tunnel. A dynamic modal decomposition (DMD) analysis of the pressure enables to describe the pressure fluctuations. Fluid dynamic computations show relation between pressure and velocity fields.

Findings

Measurements with this prototype in the wind tunnel revealed small improvements in drag for the best flow control configurations. This small benefit is because of the core of the upper span wise vortex further away from the rear window than the lower span wise vortex. These small improvements in drag were confirmed with pressure measurements on the rear window and tailgate. The DMD analysis of the surface pressure showed a low frequency pendulum oscillation on the lower area of the tailgate, linked with low velocity frequencies in the shear layers near the tailgate.

Originality/value

Experimental and numerical results show interest to increase pressure at bottom of the rear end of this SUV prototype. The dynamic description of the wall pressure shows importance of flow control solutions reducing pressure fluctuations at low frequencies in the lower area of the tailgate.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 January 2020

Adrián Vazquez Gonzalez, Andrés Meana-Fernández and Jesús Manuel Fernández

The purpose of the paper is to quantify the impact of the non-uniform flow generated by the upstream stator on the generation and convection of the tip leakage flow (TLF…

Abstract

Purpose

The purpose of the paper is to quantify the impact of the non-uniform flow generated by the upstream stator on the generation and convection of the tip leakage flow (TLF) structures in the passages of the rotor blades in a low-speed axial fan.

Design/methodology/approach

A full three dimensional (3D)-viscous unsteady Reynolds-averaged Navier-stokes (RANS) (URANS) simulation of the flow within a periodic domain of the axial stage has been performed at three different flow rate coefficients (φ = 0.38, 0.32, 0.27) using ReNormalization Group k-ε turbulence modelling. A typical tip clearance of 2.3 per cent of the blade span has been modelled on a reduced domain comprising a three-vaned stator and a two-bladed rotor with circumferential periodicity. A non-conformal grid with hybrid meshing, locally refined O-meshes on both blades and vanes walls with (100 × 25 × 80) elements, a 15-node meshed tip gap and circumferential interfaces for sliding mesh computations were also implemented. The unsteady motion of the rotor has been covered with 60 time steps per blade event. The simulations were validated with experimental measurements of the static pressure in the shroud of the blade tip region.

Findings

It has been observed that both TLF and intensities of the tip leakage vortex (TLV) are significantly influenced by upstream stator wakes, especially at nominal and partial load conditions. In particular, the leakage flow, which represents 12.4 per cent and 11.3 per cent of the working flow rate, respectively, has shown a clear periodic fluctuation clocked with the vane passing period in the relative domain. The periodic fluctuation of the TLF is in the range of 2.8-3.4 per cent of the mean value. In addition, the trajectory of the tip vortex is also notably perturbed, with root-mean squared fluctuations reaching up to 18 per cent and 6 per cent in the regions of maximum interaction at 50 per cent and 25 per cent of the blade chord for nominal and partial load conditions, respectively. On the contrary, the massive flow separation observed in the tip region of the blades for near-stall conditions prevents the formation of TLV structures and neglects any further interaction with the upstream vanes.

Research limitations/implications

Despite the increasing use of large eddy simulation modelling in turbomachinery environments, which requires extremely high computational costs, URANS modelling is still revealed as a useful technique to describe highly complex viscous mechanisms in 3D swirl flows, such as unsteady tip flow structures, with reasonable accuracy.

Originality/value

The paper presents a validated numerical model that simulates the unsteady response of the TLF to upstream perturbations in an axial fan stage. It also provides levels of instabilities in the TLV derived from the deterministic non-uniformities associated to the vane wakes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 July 2006

S.A. Khan and E. Rathakrishnan

This paper presents an experimental investigation to study the effectiveness of micro jets under the influence of Over, Under, and Correct expansion to control the base pressure

Abstract

Purpose

This paper presents an experimental investigation to study the effectiveness of micro jets under the influence of Over, Under, and Correct expansion to control the base pressure in suddenly expanded axi‐symmetric ducts.

Design/methodology/approach

Four micro jets of 1 mm orifice diameter located at 90° intervals along a pitch circle diameter of 1.3 times the nozzle exit diameter in the base region was employed as active controls. The tests were conducted for Mach numbers 1.5, 1.3, 1.6, 1.8, 2.0, 2.5, and 3.0. The jets were expanded suddenly into an axi‐symmetric tube with cross‐sectional area 2.56 times that of nozzle exit area. The L/D ratio of the sudden expansion tube was varied from 10 to 1.

Findings

From the present studies, it was found that the maximum increase in base pressure is 152 percent for Mach number 2.58. It is found that the micro jets do not adversely influence the wall pressure distribution.

Research limitations/implications

As a result of developments in space flights and missile technology, the base flows at high Reynolds numbers continues to be an important area of research. Our understanding of many features of base flows remains poor, due to inadequate knowledge of turbulence, particularly in the presence of strong pressure gradient.

Originality/value

The paper shows that micro jets can serve as an effective controller raising the base suction to almost zero level for some combination for parameters. The nozzle pressure ratio has a definite role to play in fixing the base pressure with and without control. There is no adverse effect of the micro jets on the flow field in the duct.

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 25 February 2014

Ghasem Behfarshad and Saeed Mahlou

The main purpose of this research is to investigate distortion and duct total pressure loss at the duct exit (engine face) of a special S-shaped air intake at different simulated…

Abstract

Purpose

The main purpose of this research is to investigate distortion and duct total pressure loss at the duct exit (engine face) of a special S-shaped air intake at different simulated flight regimes with and without lip-screen installation. This air intake is supposed to be equipped with a micro jet engine.

Design/methodology/approach

Experimental investigations were performed by using a low subsonic close loop wind tunnel to simulate different flight regimes such as negative stall, cruise, shallow angle climb, steep angle climb and positive stall. In order to investigate flow behaviour along the duct length, static pressure changes were also measured. Test results were plotted in terms of total pressure contours and reduced results were tabulated. Static pressure results were also illustrated in different figures.

Findings

Results indicated that duct total pressure loss is within the acceptable range and is less than the 2 percent (allowable value) at various flight regimes, but installation of lip-screen has approximately reduced duct pressure recovery between 5 and 15 percent. Results also showed that mean distortion coefficient at duct exit is between 0.22 and 0.3, which is greater than the amount recommended by many jet engine producers.

Research limitations/implications

It would be desirable to investigate the effects of flow control devices installed on this air intake in future researches.

Practical implications

It is highly recommended to practically examine any designed air intake to make sure it is geometrically optimized.

Originality/value

Current research developed an initial test bed for evaluation of the overall aerodynamic behavior of a previously designed special purpose S-shaped duct air intake. Obtained experimental results will help to analyze the internal flow characteristics of the current model as well as preparing data to compare with the future test results for improving its performance.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 April 1999

C. Cravero, C. Giusto and A.F. Massardo

The fluid‐dynamic and heat transfer experimental analysis of a gas turbine internal three‐pass blade cooling channel is presented. The passage is composed of three rectilinear…

Abstract

The fluid‐dynamic and heat transfer experimental analysis of a gas turbine internal three‐pass blade cooling channel is presented. The passage is composed of three rectilinear channels joined by two sharp 180 degree turns; moreover, the channel section is trapezoidal instead of rectangular configuration, already analysed in depth in the literature. The trapezoidal section is more representative of the actual geometrical configuration of the blade and, in comparison with the rectangular section, it shows significant aspect ratio and hydraulic diameter variations along the channel. These variations have a strong impact on the flow field and the heat transfer coefficient distributions. The flow analysis experimental results ‐ wall pressure distributions, flow visualisations ‐ are presented and discussed. The heat transfer coefficient distributions, Nusselt enhancement factor, obtained using thermocromic liquid crystals (TLC), have been studied as well. In order to understand the influence of the cooling mass flow rate, a wide range of flow regimes ‐ Reynolds numbers ‐ has been considered.

Details

Aircraft Engineering and Aerospace Technology, vol. 71 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of over 9000