Search results

1 – 10 of over 1000
Article
Publication date: 1 March 2005

J.E. Hardy and T.E. McKnight

Bench‐top wind tunnels are used extensively by the US Air Force for calibrating anemometers. As anemometers have improved, the need for reduced uncertainties in the bench‐top wind

Abstract

Purpose

Bench‐top wind tunnels are used extensively by the US Air Force for calibrating anemometers. As anemometers have improved, the need for reduced uncertainties in the bench‐top wind tunnels was required. A three‐pronged approach was used to reduce low velocity uncertainties by a factor of 2‐3.Design/methodology/approach – The reduction in velocity uncertainties was achieved by upgrading the wind tunnel instrumentation that measured the pressure and differential pressure and by improving the velocity calibration of the bench‐top wind tunnel. A detailed uncertainty analysis was performed to determine how much the instrumentation needed to improve. A laser Doppler velocimetry (LDV) was used to calibrate each wind tunnel at low velocities.Findings – The uncertainty analysis indicated that the main contributors to the velocity uncertainty were the differential pressure and the pressure measurements. These two process instruments were upgraded to reduce their individual uncertainties by a factor of 2. Additionally each bench‐top wind tunnel was calibrated using the LDV with special emphasis on flows from 0.15‐3.0 m/s. In all, nine wind tunnels were calibrated and the upgraded systems exhibited a reduction in uncertainties in the low flow region of a factor of 2‐3.Originality/value – A need to reduce velocity uncertainties in bench‐top wind tunnels was a requirement for the US Air Force calibration program. Upgraded instrumentation and individual calibration with an LDV provided the needed reduction. In the low flow region of 0.15 to 3.0 m/s, uncertainties were reduced by a factor of 2‐3.

Details

Sensor Review, vol. 25 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 10 August 2022

Weichao Yang, Yikang Liu, E. Deng, Youwu Wang, Xuhui He, Mingfeng Lei and Yunfeng Zou

The purpose of this paper is to understand the natural wind field characteristics of the tunnel entrance section and analyzing the aerodynamic performance of high-speed railway…

Abstract

Purpose

The purpose of this paper is to understand the natural wind field characteristics of the tunnel entrance section and analyzing the aerodynamic performance of high-speed railway trains (HSRTs) under natural winds.

Design/methodology/approach

Three typical tunnel entrance section sites, namely, tunnel–bridge in a dry canyon (TBDC), tunnel–bridge in a river canyon (TBRC) and tunnel–flat ground (TF), are selected to conduct a continuous wind field measurement. Based on the measured wind characteristics, the natural winds of the TBDC and TF sites are reconstituted and imported into the two corresponding full-scale computational fluid dynamics models. The aerodynamic loads of the HSRT running on TBDC and TF with reconstituted winds are simply analyzed.

Findings

The von Kármán spectrum can be used to describe the wind field at the tunnel entrance section. In the reconstituted natural wind condition, a time-varying feature of wind speed distribution and leeward side vortex around the HSRT caused by the wind speed fluctuation is found. The fluctuating amplitude of aerodynamic loads at the TBDC infrastructure is up to 97.9% larger than that at the TF infrastructure.

Originality/value

The natural wind characteristics at tunnel entrance sections on the high-speed railway are first measured and analyzed. A numerical reconstitution scheme considering the temporal and spatial variation of natural wind speed is proposed and verified based on field measurement results. The aerodynamic performance of an HSRT under reconstituted natural winds is first investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 April 2023

Laurène Muller, Michel Libsig, Yannick Bailly and Jean-Claude Roy

This paper aims to propose a dedicated measurement methodology able to simultaneously determine the stability derivative Cmα̇ and the pitch damping coefficient sum Cmq + Cmα̇ in a…

Abstract

Purpose

This paper aims to propose a dedicated measurement methodology able to simultaneously determine the stability derivative Cmα̇ and the pitch damping coefficient sum Cmq + Cmα̇ in a wind tunnel using a single and almost non-intrusive metrological setup called MiRo.

Design/methodology/approach

To assess the MiRo method’s reliability, repeatability and accuracy, the measurements obtained with this technique are compared to other sources like aerodynamic balance measurements, alternative wind tunnel measurements, Ludwieg tube measurements, free-flight measurements and computational fluid dynamics (CFD) simulations. Two different numerical approaches are compared and used to validate the MiRo method. The first numerical method forces the projectile to describe a pure oscillation motion with small amplitude along the pitch axis during a rectilinear flight, whereas the second numerical approach couples the one degrees of freedom simulation motion equations with CFD methods.

Findings

MiRo, a novel and almost non-intrusive technique for dynamic wind tunnel measurements, has been validated by comparison with five other experimental and numerical methodologies. Despite two completely different approaches, both numerical methods give almost identical results and show that the holding system has nearly no impact on the dynamic aerodynamic coefficients. Therefore, it could be assessed that the attitude of MiRo model in the wind tunnel is very close to the free-flight one.

Originality/value

The MiRo method allows studying the attitude of a projectile in a wind tunnel with the least possible impact on the flow around a model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1933

C.B. Millikan and A.L. Klein

THE extensive series of investigations to be discussed in the present paper has its origin in an attempt to clarify the reason for certain discrepancies, which have long plagued…

Abstract

THE extensive series of investigations to be discussed in the present paper has its origin in an attempt to clarify the reason for certain discrepancies, which have long plagued aerodynamicists, between the results of tests on similar aerofoils carried out in different wind tunnels. It has been well known for many years that the Reynolds number has an important influence on aerofoil characteristics. It is therefore highly desirable that aerofoil tests, to be useful for full‐scale predictions, be made at as large a value of the Reynolds number as possible. For several years the variable density wind tunnel of the National Advisory Committee for Aeronautics has been able to employ Reynolds numbers considerably higher than were attainable in any other wind tunnel. Its results have, therefore, very properly been generally accepted as furnishing the standard aerofoil data for aeroplane designers in the United States, and to some extent also in Europe. It appears from the present investigation that another factor, turbulence, may be of the same order of importance as the Reynolds number in determining certain aerofoil characteristics. In discussing the possible effects of this factor, it is desirable that as wide variations in its magnitude as can be obtained should be considered. The turbulence characteristics of the N.A.C.A. variable density tunnel and of the wind tunnel at the Guggenheim Aeronautics Laboratory at the California Institute of Technology (referred to in the figures as Galcit) are as different as those of any two large contemporary wind tunnels. It is for this reason that in the following discussion results obtained in these two tunnels are compared.

Details

Aircraft Engineering and Aerospace Technology, vol. 5 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 July 1964

G.W. Webber

A Discussion concerning the Use of Wind Tunnel Results and Flight Test Measurements in the Prediction of Aerodynamic Loads for Stressing Purposes in the Aerodynamics Department of…

Abstract

A Discussion concerning the Use of Wind Tunnel Results and Flight Test Measurements in the Prediction of Aerodynamic Loads for Stressing Purposes in the Aerodynamics Department of the Weybridge Division of British Aircraft Corporation. The responsibility for the prediction and issue of aerodynamic loads for stressing purposes at the Weybridge Division of British Aircraft Corporation is carried by the Aerodynamics Department. The arguments for and against this arrangement are briefly examined. One of the main arguments in favour is the facility with which wind tunnel tests can be instigated and controlled. The use of wind tunnel tests specifically designed to give aerodynamic loading data and their relation to estimation using theoretical and semi‐empirical methods is fully discussed and illustrated. The confirmation of design estimates by full scale in‐flight load measurement is described and the usefulness of in‐flight measurements as a design tool on subsequent aircraft of a similar type is discussed.

Details

Aircraft Engineering and Aerospace Technology, vol. 36 no. 7
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 5 September 2016

Krzysztof Olasek, Maciej Karczewski, Michal Lipian, Piotr Wiklak and Krzysztof Józwik

A solution to increase the energy production rate of the wind turbine is proposed by forcing more air to move through the turbine working section. This can be achieved by…

Abstract

Purpose

A solution to increase the energy production rate of the wind turbine is proposed by forcing more air to move through the turbine working section. This can be achieved by equipping the rotor with a diffusing channel ended with a brim (diffuser augmented wind turbine – DAWT). The purpose of this paper is to design an experimental stand and perform the measurements of velocity vector fields through the diffuser and power characteristic of the wind turbine.

Design/methodology/approach

The experiments were carried out in a small subsonic wind tunnel at the Institute of Turbomachinery, Lodz University of Technology. An experimental stand design process as well as measurement results are presented. Model size sensitivity study was performed at the beginning. The experimental campaign consisted of velocity measurements by means of particle image velocimetry (PIV) and pneumatic pitot probe as well as torque and rotational velocity measurements.

Findings

Characteristics (power coefficient vs tip speed ratio) of the bare and shrouded wind turbine were obtained. The results show an increase in the wind turbine power up to 70-75 per cent by shrouding the rotor with a diffuser. The mechanisms responsible for such a power increase were well explained by the PIV and pneumatic measurement results revealing the nature of the flow through the diffuser.

Research limitations/implications

Experimental stand for wind turbine rotor testing is of a preliminary character. Most optimal methodology for obtaining power characteristic should be determined now. Presented results can serve as good input for choice of stable and reliable control system of wind turbine operational parameters.

Practical implications

A 3 kW DAWT is being developed at the Institute of Turbomachinery, Lodz University of Technology. Aim of the study is to design a compact and smart wind turbine optimised for low wind speed conditions. Developed wind turbine has a potential to be used as an effective element within a net of distributed generation, e.g. for domestic use.

Originality/value

Research carried out is the continuation of theoretical study began in 1970s. It was also inspired by practical solutions proposed by Japanese researchers few years ago. Presented paper is the summary of work devoted to optimisation of the DAWT for wind conditions in the region. Original solution has been applied, e.g. for experimental stand design (3D printing application).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 1932

Hugh L. Dryden

THE subject of turbulence is one of great interest in the field of aerodynamics, and many investigations are in progress in the aerodynamical laboratories of the world on various…

Abstract

THE subject of turbulence is one of great interest in the field of aerodynamics, and many investigations are in progress in the aerodynamical laboratories of the world on various aspects of the subject. The recent international co‐operative measurements inaugurated under the auspices of the National Physical Laboratory of Great Britain have shown that turbulence is a factor of considerable importance in determining the forces acting on bodies in an air stream, and the chief question of the day is whether it is desirable to have large or small turbulence in wind tunnels.

Details

Aircraft Engineering and Aerospace Technology, vol. 4 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 2 January 2018

Mahmood Khalid, Khalid A. Juhany and Salah Hafez

The purpose of this paper is to use a computational technique to simulate the flow in a two-dimensional (2D) wind tunnel where the effect of the solid walls facing the model has…

Abstract

Purpose

The purpose of this paper is to use a computational technique to simulate the flow in a two-dimensional (2D) wind tunnel where the effect of the solid walls facing the model has been addressed using a porous geometry so that interference arriving at the solid walls are duly damped and a flow suction procedure has been adopted at the side wall to minimize the span-wise effect of the growing side wall boundary layer.

Design/methodology/approach

A CFD procedure based on discretization of the Navier–Stokes equations has been used to model the flow in a rectangular volume with appropriate treatment for solid walls of the confined volume in which the model is placed. The rectangular volume was configured by stacking O-Grid sections in a span-wise direction using geometric growth from the wall. A porous wall condition has been adapted to counter the wall interference signatures and a separate suction procedure has been implemented for reducing the side wall boundary layer effects.

Findings

It has been shown that through such corrective measures, the flow in a wind tunnel can be adequately simulated using computational modeling. Computed results were compared against experimental measurements obtained from IAR (Institute for Aerospace, Canada) and NAL (National Aeronautical Laboratory, Japan) to show that indeed appropriate corrective means may be adapted to reduce the interference effects.

Research limitations/implications

The solutions seemed to converge a lot better using relatively coarser grids which placed the shock locations closer to the experimental values. The finer grids were more stiff to converge and resulted in reversed flow with the two equation k-w model in the region where the intention was to draw out the fluid to thin down the boundary layer. The one equation Spalart–Allmaras model gave better result when porosity and wall suction routines were implemented.

Practical implications

This method could be used by industry to point check the results against certain demanding flow conditions and then used for more routine parametric studies at other conditions. The method would prove to be efficient and economical during early design stages of a configuration.

Originality/value

The method makes use of an O-grid to represent the confined test section and its dual treatment of wall interference and blockage effects through simultaneous application of porosity and boundary layer suction is believed to be quite original.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 May 2018

Cezary Galinski, Grzegorz Krysztofiak, Marek Miller, Pawel Ruchala, Marek Kalski, Mateusz Lis, Adam Dziubinski, Krzysztof Bogdanski, Lukasz Stefanek and Jaroslaw Hajduk

The purpose of this paper is to present the methodology and approach adapted to conduct a wind tunnel experiment on the inverted joined-wing airplane flying model together with…

Abstract

Purpose

The purpose of this paper is to present the methodology and approach adapted to conduct a wind tunnel experiment on the inverted joined-wing airplane flying model together with the results obtained.

Design/methodology/approach

General assumptions underlying the dual-use model design are presented in this paper. The model was supposed to be used for both wind tunnel tests and flight tests that significantly drive its size and internal structure. Wind tunnel tests results compared with the outcome of computational fluid dynamics (CFD) were used to assess airplane flying qualities before the maiden flight was performed.

Findings

Extensive data about the aerodynamic characteristics of the airplane were collected. Clean configurations in symmetric and asymmetric cases and also configurations with various control surface deflections were tested.

Practical implications

The data obtained experimentally made it possible to predict the performance and stability properties of the unconventional airplane and to draw conclusions on improvements in further designs of this configuration.

Originality/value

The airplane described in this paper differs from frequently analyzed joined-wing configurations, as it boasts a front lifting surface attached at the top of the fuselage, whereas the aft one is attached at the bottom. The testing technique involving the application of a dual-use model is also innovative.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 August 2018

Z.W. Teo, T.H. New, Shiya Li, T. Pfeiffer, B. Nagel and V. Gollnick

This paper aims to report on the physical distortions associated with the use of additive manufactured components for wind tunnel testing and procedures adopted to correct for…

Abstract

Purpose

This paper aims to report on the physical distortions associated with the use of additive manufactured components for wind tunnel testing and procedures adopted to correct for them.

Design/methodology/approach

Wings of a joined-wing test aircraft configuration were fabricated with additive manufacturing and tested in a subsonic closed-loop wind tunnel. Wing deflections were observed during testing and quantified using image-processing procedures. These quantified deflections were then incorporated into numerical simulations and results had agreed with wind tunnel measurement results.

Findings

Additive manufacturing provides cost-effective wing components for wind tunnel test components with fast turn-around time. They can be used with confidence if the wing deflections could be accounted for systematically and accurately, especially at the region of aerodynamic stall.

Research limitations/implications

Significant wing flutter and unsteady deflections were encountered at higher test velocities and pitch angles. This reduced the accuracy in which the wing deflections could be corrected. Additionally, wing twists could not be quantified as effectively because of camera perspectives.

Originality/value

This paper shows that additive manufacturing can be used to fabricate aircraft test components with satisfactory strength and quantifiable deflections for wind tunnel testing, especially when the designs are significantly complex and thin.

Details

Rapid Prototyping Journal, vol. 24 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 1000