Search results

1 – 10 of 599
Article
Publication date: 13 September 2021

Gholamreza Imani and Mohsen Mozafari-Shamsi

The lattice Boltzmann simulation of fluid flow in partial porous geometries with curved porous-fluid interfaces has not been investigated yet. It is mainly because of the lack of…

Abstract

Purpose

The lattice Boltzmann simulation of fluid flow in partial porous geometries with curved porous-fluid interfaces has not been investigated yet. It is mainly because of the lack of a method in the lattice Boltzmann framework to model the hydrodynamic compatibility conditions at curved porous-fluid interfaces, which is required for the two-domain approach. Therefore, the purpose of this study is to develop such a method.

Design/methodology/approach

This research extends the non-equilibrium extrapolation lattice Boltzmann method for satisfying no-slip conditions at curved solid boundaries, to model hydrodynamic compatibility conditions at curved porous-fluid interfaces.

Findings

The proposed method is tested against the results available from conventional numerical methods via the problem of fluid flow through and around a porous circular cylinder in crossflow. As such, streamlines, geometrical characteristics of recirculating wakes and drag coefficient are validated for different Reynolds (5 ≤ Re ≤ 40) and Darcy (10−5Da ≤ 5 × 10−1) numbers. It is also shown that without applying any compatibility conditions at the interface, the predicted flow structure is not satisfactory, even for a very fine mesh. This result highlights the importance of the two-domain approach for lattice Boltzmann simulation of the fluid flow in partial porous geometries with curved porous-fluid interfaces.

Originality/value

No research is found in the literature for applying the hydrodynamic compatibility conditions at curved porous-fluid interfaces in the lattice Boltzmann framework.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 August 2022

Jorge Lucas Krenchiglova, Luís Orlando Emerich dos Santos, Diogo Nardelli Siebert and Paulo Cesar Philippi

The main purpose of this paper was to investigate Lattice Boltzmann (LB) models for the bulk incompressible flow past immersed bodies and to find the set of boundary conditions…

Abstract

Purpose

The main purpose of this paper was to investigate Lattice Boltzmann (LB) models for the bulk incompressible flow past immersed bodies and to find the set of boundary conditions (BCs) that can be considered suitable for modeling the borders of the numerical simulation domain in such a way as to avoid any effect of these BC on the flow trail that is formed behind the body.

Design/methodology/approach

Three different models of the Lattice Boltzmann equation (LBE) and six different sets of BCs are tested. In addition to the classical LBE based on the Bhatnagar–Gross–Krook (BGK) single relaxation time collision model, a moments-based model and a model with two relaxation times were investigated.

Findings

The flow pattern and its macroscopic effects on the aerodynamic coefficients appear to be very dependent on the set of BC models used for the borders of the numerical domain. The imposition of pressure at the exit results in pressure perturbations, giving rise to sound waves that propagate back into the simulation domain, producing perturbations on the upwind flow. In the same way, the free-slip BC for the lateral bords appears to affect the trail of vortices behind the body in this range of Reynolds number (Re = 1,000).

Originality/value

The paper investigates incompressible flow past immersed bodies and presents the set of BCs that can be considered suitable for modeling the borders of the numerical simulation domain in such a way as to avoid any effect of these BCs on the flow trail that is formed behind the body.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 September 2019

Heng Sun and David Ross

The MRT lattice Boltzmann simulation of natural convection in a confined environment is carried out. The flow and heat transfer during natural convection in a symmetrical annulus…

Abstract

Purpose

The MRT lattice Boltzmann simulation of natural convection in a confined environment is carried out. The flow and heat transfer during natural convection in a symmetrical annulus are studied.

Design/methodology/approach

The cavity is filled with TiO2-water nanofluid, and the thermal conductivity and dynamic viscosity of nanofluid are measured experimentally. The experimental data are utilized in the numerical simulations. The nanofluids are prepared at four different nanoparticle concentrations φ = 0, 0.1, 0.3 and 0.5. It is notable that the radial coordinate is used into the temperature distribution function. As a result, only one source term is required for the present lattice Boltzmann model. On the other hand, the macro cylindrical energy equation is exactly recovered using Chapman–Enskog analysis.

Findings

Influence of some main parameters including Rayleigh number in range of 103 to 106, solid volume fraction of nanofluid in range of 0 to 0.5 and four different aspect ratios on the the nanofluid flow (i.e. streamlines), heat transfer (i.e. temperature distribution and average Nusselt number) and entropy generation (i.e. total entropy generation and Bejan number) are presented, quantitatively and graphically. It is found that adding TiO2 nanoparticles to the base fluid has considerable positive effect on the heat transfer performance and entropy generation. In addition, the configuration of the annulus can be good controlling parameter on the heat transfer rate during natural convection.

Originality/value

The originality of this work is using of a modern numerical method to simulate the free convection and conducting experimental observations to calculate the thermo-physical properties of nanofluid. In addition, the numerical and experimental works are combined to provide accurate results.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 October 2018

Alireza Rahimi, Abbas Kasaeipoor, Emad Hasani Malekshah and Lioua Kolsi

This paper aims to perform the lattice Boltzmann simulation of natural convection heat transfer in cavities included with active hot and cold walls at the side walls and internal…

Abstract

Purpose

This paper aims to perform the lattice Boltzmann simulation of natural convection heat transfer in cavities included with active hot and cold walls at the side walls and internal hot and cold obstacles.

Design/methodology/approach

The cavity is filled with double wall carbon nanotubes (DWCNTs)-water nanofluid. Different approaches such as local and total entropy generation, local and average Nusselt number and heatline visualization are used to analyze the natural convection heat transfer. The cavity is filled with DWCNTs-water nanofluid and the thermal conductivity and dynamic viscosity are measured experimentally at different solid volume fractions of 0.01 per cent, 0.02 per cent, 0.05 per cent, 0.1 per cent, 0.2 per cent and 0.5 per cent and at a temperature range of 300 to 340 (K).

Findings

Two sets of correlations for these parameters based on temperature and solid volume fraction are developed and used in the numerical simulations. The influences of different governing parameters such as Rayleigh number, solid volume fraction and different arrangements of active walls on the fluid flow, heat transfer and entropy generation are presented, comprehensively. It is found that the different arrangements of active walls have pronounced influence on the flow structure and heat transfer performance. Furthermore, the Nusselt number has direct relationship with Rayleigh number and solid volume fraction. On the other hand, the total entropy generation has direct and reverse relationship with Rayleigh number and solid volume fraction, respectively.

Originality/value

The originality of this work is to analyze the two-dimensional natural convection using lattice Boltzmann method and different approaches such as entropy generation and heatline visualization.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 July 2019

Qingang Xiong, Arash Khosravi, Narjes Nabipour, Mohammad Hossein Doranehgard, Aida Sabaghmoghadam and David Ross

This paper aims to numerically investigate the nanofluid flow, heat transfer and entropy generation during natural convection in an annulus.

Abstract

Purpose

This paper aims to numerically investigate the nanofluid flow, heat transfer and entropy generation during natural convection in an annulus.

Design/methodology/approach

The lattice Boltzmann method is used to simulate the velocity and temperature fields. Furthermore, some special modifications are applied to make the lattice Boltzmann method capable for simulation in the curved boundary conditions. The annulus is filled with CuO-water nanofluid. The dynamic viscosity of nanofluid is estimated using KLL (Koo-Kleinstreuer-Li) model, and the nanoparticle shape effect is taken account in calculating the thermal conductivity. On the other hand, the local/volumetric entropy generation is used to show the irreversibility under influence of different parameters.

Findings

The effect of considered governing parameters including Rayleigh number (103<Ra < 106); nanoparticle concentration (0<<0.04) and configuration of annulus on the flow structure; temperature field; and local and total entropy generation and heat transfer rate are presented.

Originality/value

The originality of this work is using of lattice Boltzmann method is simulation of natural convection in a curved configuration and using of Koo–Kleinstreuer–Li correlation for simulation of nanofluid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2019

Peng Zhang, Muhammad Aqeel Ashraf, Zhenling Liu, Wan-Xi Peng and David Ross

This paper aims to investigate the free convection, heat transfer and entropy generation numerically and experientially. A numerical/experimental investigation is carried out to…

123

Abstract

Purpose

This paper aims to investigate the free convection, heat transfer and entropy generation numerically and experientially. A numerical/experimental investigation is carried out to investigate the free convection hydrodynamically/thermally and entropy generation.

Design/methodology/approach

The coupled lattice Boltzmann method is used as a numerical approach which keeps the significant advantages of standard lattice Boltzmann method with better numerical stability. On the other hand, the thermal conductivity and dynamic viscosity are measured using modern devices in the laboratory.

Findings

Some correlations based on the temperature at different nanofluid concentration are derived and used in the numerical simulations. In this regard, the results will be accurate with respect to using theoretical properties of nanofluid, and close agreements will be detected between present results and the previous numerical and experimental works. The numerical investigation is done under the effect of Rayleigh number (103 < Ra < 106), volume concentration of nanofluid (?? = 0.5, 1, 1.5, 2, 2.5 and 3%) and thermal configuration of the cavity (Cases A, B, C and D).

Originality/value

The originality of the present work lies in coupling of the lattice Boltzmann method with experimental observations to analyse the free convection in a cavity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 August 2007

Haibo Huang, T.S. Lee and C. Shu

This paper aims to examine how using lattice Boltzmann method (LBM) aids the study of the isothermal‐gas flow with slight rarefaction in long microtubes.

1172

Abstract

Purpose

This paper aims to examine how using lattice Boltzmann method (LBM) aids the study of the isothermal‐gas flow with slight rarefaction in long microtubes.

Design/methodology/approach

A revised axisymmetric lattice Boltzmann model is proposed to simulate the flow in microtubes. The wall boundary condition combining the bounce‐back and specular‐reflection schemes is used to capture the slip velocity on the wall. Appropriate relation between the Knudsen number and relax‐time constant is defined.

Findings

The computed‐slip velocity, average velocity and non‐linear pressure distribution along the microtube are in excellent agreement with analytical solution of the weakly compressible Navier‐Stokes equations. The calculated‐friction factors are also consistent with available experimental data. For simulations of slip flow in microtube, LBM is more accurate and efficient than DSMC method.

Research limitations/implications

The laminar flow in circular microtube is assumed to be axisymmetric. The present LBM is only applied to the simulation of slip flows (0.01 < Kn0<0.1) in microtube.

Practical implications

Lattice‐BGK method is a very useful tool to investigate the micro slip flows.

Originality/value

A revised axisymmetric D2Q9 lattice Boltzmann model is proposed to simulate the slip flow in axisymmetric microtubes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 April 2017

Lin Deng, Junjie Liang, Yun Zhang, Huamin Zhou and Zhigao Huang

Lattice Boltzmann method (LBM) has made great success in computational fluid dynamics, and this paper aims to establish an efficient simulation model for the polymer injection…

367

Abstract

Purpose

Lattice Boltzmann method (LBM) has made great success in computational fluid dynamics, and this paper aims to establish an efficient simulation model for the polymer injection molding process using the LBM. The study aims to validate the capacity of the model for accurately predicting the injection molding process, to demonstrate the superior numerical efficiency in comparison with the current model based on the finite volume method (FVM).

Design/methodology/approach

The study adopts the stable multi-relaxation-time scheme of LBM to model the non-Newtonian polymer flow during the filling process. The volume of fluid method is naturally integrated to track the movement of the melt front. Additionally, a novel fractional-step thermal LBM is used to solve the convection-diffusion equation of the temperature field evolution, which is of high Peclet number. Through various simulation cases, the accuracy and stability of the present model are validated, and the higher numerical efficiency verified in comparison with the current FVM-based model.

Findings

The paper provides an efficient alternative to the current models in the simulation of polymer injection molding. Through the test cases, the model presented in this paper accurately predicts the filling process and successfully reproduces several characteristic phenomena of injection molding. Moreover, compared with the popular FVM-based models, the present model shows superior numerical efficiency, more fit for the future trend of parallel computing.

Research limitations/implications

Limited by the authors’ hardware resources, the programs of the present model and the FVM-based model are run on parallel up to 12 threads, which is adequate for most simulations of polymer injection molding. Through the tests, the present model has demonstrated the better numerical efficiency, and it is recommended for the researcher to investigate the parallel performance on even larger-scale parallel computing, with more threads.

Originality/value

To the authors’ knowledge, it is for the first time that the lattice Boltzmann method is applied in the simulation of injection molding, and the proposed model does obviously better in numerical efficiency than the current popular FVM-based models.

Details

Engineering Computations, vol. 34 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 March 2024

Fei Xu, Zheng Wang, Wei Hu, Caihao Yang, Xiaolong Li, Yaning Zhang, Bingxi Li and Gongnan Xie

The purpose of this paper is to develop a coupled lattice Boltzmann model for the simulation of the freezing process in unsaturated porous media.

Abstract

Purpose

The purpose of this paper is to develop a coupled lattice Boltzmann model for the simulation of the freezing process in unsaturated porous media.

Design/methodology/approach

In the developed model, the porous structure with complexity and disorder was generated by using a stochastic growth method, and then the Shan-Chen multiphase model and enthalpy-based phase change model were coupled by introducing a freezing interface force to describe the variation of phase interface. The pore size of porous media in freezing process was considered as an influential factor to phase transition temperature, and the variation of the interfacial force formed with phase change on the interface was described.

Findings

The larger porosity (0.2 and 0.8) will enlarge the unfrozen area from 42 mm to 70 mm, and the rest space of porous medium was occupied by the solid particles. The larger specific surface area (0.168 and 0.315) has a more fluctuated volume fraction distribution.

Originality/value

The concept of interfacial force was first introduced in the solid–liquid phase transition to describe the freezing process of frozen soil, enabling the formulation of a distribution equation based on enthalpy to depict the changes in the water film. The increased interfacial force serves to diminish ice formation and effectively absorb air during the freezing process. A greater surface area enhances the ability to counteract liquid migration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 July 2021

Shayan Naseri Nia, Faranak Rabiei and M.M. Rashidi

This paper aims to use the Lattice Boltzmann method (LBM) to numerically simulate the natural convection heat transfer of Cu-water nanofluid in an L-shaped enclosure with curved…

Abstract

Purpose

This paper aims to use the Lattice Boltzmann method (LBM) to numerically simulate the natural convection heat transfer of Cu-water nanofluid in an L-shaped enclosure with curved boundaries.

Design/methodology/approach

LBM on three different models of curved L-shape cavity using staircase approach is applied to perform a comparative investigation for the effects of curved boundary on fluid flow and heat transfer. The staircase approximation is a straightforward and efficient approach to simulating curved boundaries in LBM.

Findings

The effect of curved boundary on natural convection in different parameter ranges of Rayleigh number and nanoparticle volume fraction is investigated. The curved L-shape results are also compared to the rectangular L-shape results that were also achieved in this study. The curved boundary LBM simulation is also validated with existing studies, which shows great accuracy in this study. The results show that the top curved boundary in curved L-shape models causes a notable increase in the Nusselt number values.

Originality/value

Based on existing literature, there is a lack of comparative studies which would specifically examine the effects of curved boundaries on natural convection in closed cavities. Particularly, the application of curved boundaries to an L-shape cavity has not been examined. In this study, curved boundaries are applied to the sharp corners of the bending section in the L-shape and the results of the curved L-shape models are compared to the simple rectangular L-shape model. Hence, a comparative evaluation is performed for the effect of curved boundaries on fluid flow in the L-shape enclosure.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 599