Search results

1 – 10 of 94
Open Access
Article
Publication date: 19 August 2021

Linh Truong-Hong, Roderik Lindenbergh and Thu Anh Nguyen

Terrestrial laser scanning (TLS) point clouds have been widely used in deformation measurement for structures. However, reliability and accuracy of resulting deformation

2332

Abstract

Purpose

Terrestrial laser scanning (TLS) point clouds have been widely used in deformation measurement for structures. However, reliability and accuracy of resulting deformation estimation strongly depends on quality of each step of a workflow, which are not fully addressed. This study aims to give insight error of these steps, and results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. Thus, the main contributions of the paper are investigating point cloud registration error affecting resulting deformation estimation, identifying an appropriate segmentation method used to extract data points of a deformed surface, investigating a methodology to determine an un-deformed or a reference surface for estimating deformation, and proposing a methodology to minimize the impact of outlier, noisy data and/or mixed pixels on deformation estimation.

Design/methodology/approach

In practice, the quality of data point clouds and of surface extraction strongly impacts on resulting deformation estimation based on laser scanning point clouds, which can cause an incorrect decision on the state of the structure if uncertainty is available. In an effort to have more comprehensive insight into those impacts, this study addresses four issues: data errors due to data registration from multiple scanning stations (Issue 1), methods used to extract point clouds of structure surfaces (Issue 2), selection of the reference surface Sref to measure deformation (Issue 3), and available outlier and/or mixed pixels (Issue 4). This investigation demonstrates through estimating deformation of the bridge abutment, building and an oil storage tank.

Findings

The study shows that both random sample consensus (RANSAC) and region growing–based methods [a cell-based/voxel-based region growing (CRG/VRG)] can be extracted data points of surfaces, but RANSAC is only applicable for a primary primitive surface (e.g. a plane in this study) subjected to a small deformation (case study 2 and 3) and cannot eliminate mixed pixels. On another hand, CRG and VRG impose a suitable method applied for deformed, free-form surfaces. In addition, in practice, a reference surface of a structure is mostly not available. The use of a fitting plane based on a point cloud of a current surface would cause unrealistic and inaccurate deformation because outlier data points and data points of damaged areas affect an accuracy of the fitting plane. This study would recommend the use of a reference surface determined based on a design concept/specification. A smoothing method with a spatial interval can be effectively minimize, negative impact of outlier, noisy data and/or mixed pixels on deformation estimation.

Research limitations/implications

Due to difficulty in logistics, an independent measurement cannot be established to assess the deformation accuracy based on TLS data point cloud in the case studies of this research. However, common laser scanners using the time-of-flight or phase-shift principle provide point clouds with accuracy in the order of 1–6 mm, while the point clouds of triangulation scanners have sub-millimetre accuracy.

Practical implications

This study aims to give insight error of these steps, and the results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds.

Social implications

The results of this study would provide guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. A low-cost method can be applied for deformation analysis of the structure.

Originality/value

Although a large amount of the studies used laser scanning to measure structure deformation in the last two decades, the methods mainly applied were to measure change between two states (or epochs) of the structure surface and focused on quantifying deformation-based TLS point clouds. Those studies proved that a laser scanner could be an alternative unit to acquire spatial information for deformation monitoring. However, there are still challenges in establishing an appropriate procedure to collect a high quality of point clouds and develop methods to interpret the point clouds to obtain reliable and accurate deformation, when uncertainty, including data quality and reference information, is available. Therefore, this study demonstrates the impact of data quality in a term of point cloud registration error, selected methods for extracting point clouds of surfaces, identifying reference information, and available outlier, noisy data and/or mixed pixels on deformation estimation.

Details

International Journal of Building Pathology and Adaptation, vol. 40 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 16 June 2022

Qinghong Fu

This study aims to investigate the service performances of a new full-section asphalt concrete waterproof sealing structure (FSACWSS) for the high-speed railway subgrade through…

Abstract

Purpose

This study aims to investigate the service performances of a new full-section asphalt concrete waterproof sealing structure (FSACWSS) for the high-speed railway subgrade through on-site tracking, monitoring and post-construction investigation.

Design/methodology/approach

Based on the working state of the waterproof sealing structure, the main functional characteristics were analyzed, and a kind of roller-compacted high elastic modulus asphalt concrete (HEMAC) was designed and evaluated by several groups of laboratory tests. It is applied to an engineering test section, and the long-term performance monitoring and subgrade dynamic performance testing system were installed to track and monitor working performances of the test section and the adjacent contrast section with fiber-reinforced concrete.

Findings

Results show that both the dynamic performance of the track structure and the subgrade in the test section meet the requirements of the specification limits. The water content in the subgrade of the test section is maintained at 8–18%, which is less affected by the weather. However, the water content in the subgrade bed of the contrast section is 10–35%, which fluctuates significantly with the weather. The heat absorption effect of asphalt concrete in the test section makes the temperature of the subgrade at the shoulder larger than that in the contrastive section. The monitoring value of the subgrade vertical deformation in the test section is slightly larger than that in the contrastive section, but all of them meet the limit requirements. The asphalt concrete in the test section is in good contact with the base, and there are no diseases such as looseness or spalling. Only a number of cracks are found at the joints of the base plates. However, there are more longitudinal and lateral cracks in the contrastive section, which seriously affects the waterproof and sealing effects. Besides, the asphalt concrete is easier to repair, featuring good maintainability.

Originality/value

This research can provide a basis for popularization and application of the asphalt concrete waterproof sealing structure in high-speed railways.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 23 May 2022

Yangsheng Ye, Degou Cai, Lin Geng, Hongye Yan, Junkai Yao and Feng Chen

This study aims to propose a semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the high-speed railway (HSR) subgrade under…

Abstract

Purpose

This study aims to propose a semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the high-speed railway (HSR) subgrade under cyclic load.

Design/methodology/approach

According to the basic framework of critical state soil mechanics and in view of the characteristics of the coarse-grained soil filler for the HSR subgrade to bear the train vibration load repeatedly for a long time, the hyperbolic empirical relationship between particle breakage and plastic work was derived. Considering the influence of cyclic vibration time and stress ratio, the particle breakage correction function of coarse-grained soil filler for the HSR subgrade under cyclic load was proposed. According to the classical theory of plastic mechanics, the shearing dilatation equation of the coarse-grained soil filler for the HSR subgrade considering particle breakage was modified and obtained. A semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the HSR subgrade under cyclic load was further established. The backward Euler method was used to discretize the constitutive equation, build a numerical algorithm of “elastic prediction and plastic modification” and make a secondary development of the program to solve the cyclic compaction model.

Findings

Through the comparison with the result of laboratory triaxial test under the cyclic loading of coarse-grained soil filler for the HSR subgrade, the accuracy and applicability of the cyclic compaction model were verified. Results show that the model can accurately predict the cumulative deformation characteristics of coarse-grained soil filler for the HSR subgrade under the train vibration loading repeatedly for a long time. It considers the effects of particle breakage and stress ratio, which can be used to calculate and analyze the stress and deformation evolution law of the subgrade structure for HSR.

Originality/value

The research can provide a simple and practical method for calculating deformation of railway under cyclic loading.

Open Access
Article
Publication date: 9 December 2019

Jihai Jiang, Wei-Peng Yan and Ge-Qiang Li

The purpose of this paper is to analyze the micro-motion of the cylinder block.

Abstract

Purpose

The purpose of this paper is to analyze the micro-motion of the cylinder block.

Design/methodology/approach

Based on the elasto-hydrodynamic lubrication, a numerical model for the cylinder block/valve plate interface is proposed, with consideration of the elastic deformations, the pressure-viscosity effect and asperity contacts. The influence-function method is applied to calculating the actual deformations of the cylinder block and the valve plate. The asperity contact model simplified from Greenwood assumption is introduced into the numerical model. Furthermore, the relationship between the micro-motion and the operating condition, the sealing belt width is discussed, respectively.

Findings

The results show an increase in the discharge pressure causes the tilt state and the vibrating motion getting worse, which can be eased by improving the rotational speed, the sealing belt width and the ratio of external and internal sealing belt width.

Originality/value

The proposed research can provide a theoretical reference for the optimizing design of cylinder block/valve plate pair.

Details

Industrial Lubrication and Tribology, vol. 72 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 14 March 2022

Jamiu Adetayo Dauda, Suraj A. Rahmon, Ibrahim A. Tijani, Fouad Mohammad and Wakeel O. Okegbenro

The purpose of this study is to find the optimum design of Reinforced Concrete (RC) pile foundation to enable efficient use of structural concrete with greater consequences for…

1687

Abstract

Purpose

The purpose of this study is to find the optimum design of Reinforced Concrete (RC) pile foundation to enable efficient use of structural concrete with greater consequences for global environment and economy.

Design/methodology/approach

A non-linear optimisation technique based on the Generalised Reduced Gradient (GRG) algorithm was implemented to find the minimum cost of RC pile foundation in frictional soil. This was achieved by obtaining the optimum pile satisfying the serviceability and ultimate limit state requirements of BS 8004 and EC 7. The formulated structural optimisation procedure was applied to a case study project to assess the efficiency of the proposed design formulation.

Findings

The results prove that the GRG method in Excel solver is an active, fast, accurate and efficient computer programme to obtain optimum pile design. The application of the optimisation for the case study project shows up to 26% cost reduction compared to the conventional design.

Research limitations/implications

The design and formulation of design constraints will be limited to provisions of BS 8004 and EC 7.

Practical implications

Since the minimum quantity of concrete was attained through optimisation, then minimum cement will be used and thus result in minimum CO2 emission. Therefore, the optimum design of concrete structures is a vital solution to limit the damage to the Earth's climate and the physical environment resulting from high carbon emissions.

Originality/value

The current study considers the incorporation of different soil ground parameters in the optimisation process rather than assuming any pile capacity value for the optimisation process.

Details

Frontiers in Engineering and Built Environment, vol. 2 no. 3
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 15 November 2022

Zhiqiang Zhang, Xingyu Zhu and Ronghua Wei

Large displacement misalignment under the action of active faults can cause complex three-dimensional deformation in subway tunnels, resulting in severe damage, distortion and…

Abstract

Purpose

Large displacement misalignment under the action of active faults can cause complex three-dimensional deformation in subway tunnels, resulting in severe damage, distortion and misalignment. There is no developed system of fortification and related codes to follow. There are scientific problems and technical challenges in this field that have never been encountered in past research and practices.

Design/methodology/approach

This paper adopted a self-designed large-scale active fault dislocation simulation loading system to conduct a similar model test of the tunnel under active fault dislocation based on the open-cut tunnel project of the Urumqi Rail Transit Line 2, which passes through the Jiujiawan normal fault. The test simulated the subway tunnel passing through the normal fault, which is inclined at 60°. This research compared and analyzed the differences in mechanical behavior between two types of lining section: the open-cut double-line box tunnel and the modified double-line box arch tunnel. The structural response and failure characteristics of the open-cut segmented lining of the tunnel under the stick-slip part of the normal fault were studied.

Findings

The results indicated that the double-line box arch tunnel improved the shear and longitudinal bending performance. Longitudinal cracks were mainly distributed in the baseplate, wall foot and arch foot, and the crack position was basically consistent with the longitudinal distribution of surrounding rock pressure. This indicated that the longitudinal cracks were due to the large local load of the cross-section of the structure, leading to an excessive local bending moment of the structure, which resulted in large eccentric failure of the lining and formation of longitudinal cracks. Compared with the ordinary box section tunnel, the improved double-line box arch tunnel significantly reduced the destroyed and damage areas of the hanging wall and footwall. The damage area and crack length were reduced by 39 and 59.3%, respectively. This indicates that the improved double-line box arch tunnel had good anti-sliding performance.

Originality/value

This paper adopted a self-designed large-scale active fault dislocation simulation loading system to conduct a similar model test of the tunnel under active fault dislocation. This system increased the similarity ratio of the test model, improved the dislocation loading rate and optimized the simulation scheme of the segmented flexible lining and other key factors affecting the test. It is of great scientific significance and engineering value to investigate the structure of subway tunnels under active fault misalignment, to study its force characteristics and damage modes, and to provide a technical reserve for the design and construction of subway tunnels through active faults.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 5 September 2016

Mario Rosario Chiarelli, Vincenzo Binante, Stefano Botturi, Andrea Massai, Jan Kunzmann, Angelo Colbertaldo and Diego Giuseppe Romano

The purpose of this study concerns numerical studies and experimental validation of the mechanical behavior of hybrid specimens. These kinds of composite specimens are made up of…

1129

Abstract

Purpose

The purpose of this study concerns numerical studies and experimental validation of the mechanical behavior of hybrid specimens. These kinds of composite specimens are made up of thin carbon and glass substrates on which some Macro Fiber Composite® (MFC) piezoelectric patches are glued. A proper design and manufacturing of the hybrid specimens as well as testing activities have been performed. The research activity has been carried out under the FutureWings project, funded by the European Commission within the 7th Framework.

Design/methodology/approach

The paper describes the basic assumptions made to define specimen geometries and to carry out experimental tests. Finite element (FE) results and experimental data (laser technique measurements) have been compared: it shows very good agreement for the displacements’ distribution along the specimens.

Findings

Within the objectives of the project, the study of passive and active deformation characteristics of the hybrid composite material has provided reference technical data and has allowed for the correct adaptation of the FE models. More in particular, using the hybrid specimens, both the bending deformations and the torsion deformations have been studied.

Practical implications

The deformation capability of the hybrid specimens will be used in the development of prototypical three-dimensional structures, that, through the electrical control of the MFC patches, will be able to change the curvature of their cross section or will be able to change the angle of torsion along their longitudinal axis.

Originality/value

The design of nonstandard specimens and the tests executed represent a novelty in the field of structures using piezoelectric actuators. The numerical and experimental data of the present research constitute a small step forward in the field of smart materials technology.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 24 August 2021

Diede Christine Wijnbergen, Merel van der Stelt and Luc Martijn Verhamme

Fused filament fabrication (FFF) using tough poly lactic acid (PLA) was determined to be the most suited method to achieve low-cost prosthetic sockets. However, improvement in the…

1613

Abstract

Purpose

Fused filament fabrication (FFF) using tough poly lactic acid (PLA) was determined to be the most suited method to achieve low-cost prosthetic sockets. However, improvement in the material properties is desirable to strengthen these sockets. This study aims to evaluate annealing as a potential method to improve material properties by a heat treatment of the object after 3D printing.

Design/methodology/approach

Four different annealing methods and a control group were tested according to ISO standard 527–1 and ISO standard 527–2. The four annealing methods included: oven; sand; water; and glycerol annealing. Tests were performed on longitudinal and transversal 3D printed samples. Deformation was determined on 3D printed test rings.

Findings

Annealing using an oven, sand and water resulted in a significant increase in tensile strength in longitudinally 3D printed tensile test samples. However, the tensile strength was decreased in the transversally 3D printed tensile test samples. The tensile modulus had no significant increase in the longitudinally and transversally printed samples. Sand annealing resulted in the least deformation, with a shrinkage of 2.04% of inner diameter and an increase in height of 1.99% for the horizontally annealed test rings.

Research limitations/implications

The annealing of prosthetic sockets is not recommended as a decrease in tensile strength in transversally printed tensile test samples was observed. More research is needed towards the strengthening of tough PLA in both print directions.

Originality/value

This paper fulfils the need for understanding the impact of annealing on 3D printed items intended for daily use, such as a prosthetic socket.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 22 December 2022

Carolina Bermudo Gamboa, Sergio Martín Béjar, Francisco Javier Trujillo Vilches and Lorenzo Sevilla Hurtado

The purpose of this study is to cover the influence of selected printing parameters at a macro and micro-geometrical level, focusing on the dimensions, geometry and surface of…

Abstract

Purpose

The purpose of this study is to cover the influence of selected printing parameters at a macro and micro-geometrical level, focusing on the dimensions, geometry and surface of printed parts with short carbon fibers reinforced PLA. For this case study, a hollow cylindrical shape is considered, aiming to cover the gap detected in previous works analyzed.

Design/methodology/approach

Nowadays, additive manufacturing plays a very important role in the manufacturing industry, as can be seen through its numerous research and applications that can be found. Within the engineering industry, geometrical tolerances are essential for the functionality of the parts and their assembly, but the variability in three-dimensional (3D) printing makes dimensional control a difficult task. Constant development in 3D printing allows, more and more, printed parts with controlled and narrowed geometrical deviations and tolerances. So, it is essential to continue narrowing the studies to achieve the optimal printed parts, optimizing the manufacturing process as well.

Findings

Results present the relation between the selected printing parameters and the resulting printed part, showing the main deviations and the eligible values to achieve a better tolerance control. Also, from these results obtained, we present a parametric model that relates the geometrical deviations considered in this study with the printing parameters. It can provide an overview of the piece before printing it and so, adjusting the printing parameters and reducing time and number of printings to achieve a good part.

Originality/value

The main contribution is the study of the geometry selected under a 3D printing process, which is important because it considers parts that are created to fit together and need to comply with the required tolerances. Also, we consider that the parametric model can be a suitable approach to selecting the optimal printing parameters before printing.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 9 May 2022

Guolong Li, Mangmang Gao, Jingjing Yang, Yunlu Wang and Xueming Cao

This study aims to propose a vertical coupling dynamic analysis method of vehicle–track–substructure based on forced vibration and use this method to analyze the influence on the…

Abstract

Purpose

This study aims to propose a vertical coupling dynamic analysis method of vehicle–track–substructure based on forced vibration and use this method to analyze the influence on the dynamic response of track and vehicle caused by local fastener failure.

Design/methodology/approach

The track and substructure are decomposed into the rail subsystem and substructure subsystem, in which the rail subsystem is composed of two layers of nodes corresponding to the upper rail and the lower fastener. The rail is treated as a continuous beam with elastic discrete point supports, and spring-damping elements are used to simulate the constraints between rail and fastener. Forced displacement and forced velocity are used to deal with the effect of the substructure on the rail system, while the external load is used to deal with the reverse effect. The fastener failure is simulated with the methods that cancel the forced vibration transmission, namely take no account of the substructure–rail interaction at that position.

Findings

The dynamic characteristics of the infrastructure with local diseases can be accurately calculated by using the proposed method. Local fastener failure will slightly affect the vibration of substructure and carbody, but it will significantly intensify the vibration response between wheel and rail. The maximum vertical displacement and the maximum vertical vibration acceleration of rail is 2.94 times and 2.97 times the normal value, respectively, under the train speed of 350 km·h−1. At the same time, the maximum wheel–rail force and wheel load reduction rate increase by 22.0 and 50.2%, respectively, from the normal value.

Originality/value

This method can better reveal the local vibration conditions of the rail and easily simulate the influence of various defects on the dynamic response of the coupling system.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

1 – 10 of 94