Search results

1 – 10 of over 2000
Article
Publication date: 1 April 2001

F. Guo, S. Choi, J.P. Lucas and K.N. Subramanian

Composite solders were prepared by mechanically dispersing 15v% of Cu or Ag particles into the eutectic Sn‐3.5Ag solder. The average sizes for the nominally spherical Cu and Ag…

771

Abstract

Composite solders were prepared by mechanically dispersing 15v% of Cu or Ag particles into the eutectic Sn‐3.5Ag solder. The average sizes for the nominally spherical Cu and Ag particles were 6 and 4 microns, respectively. Two different processing methods were used to prepare the composite solders: blending the powdered particles with solder paste, and adding particles to the molten solder at 2808C. The composite solders were characterised by studying the morphology, size and distribution of the reinforcing phase. Particular interest and emphasis are given towards the modifications of the reinforcements during the reflow process. Microstructural features and chemical analysis of the composite solders were studied using optical and scanning electron microscopy (SEM), and energy dispersive x‐ray (EDX) analysis. The effect of reflow and isothermal ageing on the microstructure as well as the morphological changes in the interfacial IM layer of the composite solders were extensively analysed. A mechanism for IM layer growth is proposed for solid state isothermal ageing.

Details

Soldering & Surface Mount Technology, vol. 13 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 9 November 2021

Xinmeng Zhai, Yue Chen and Yuefeng Li

The purpose of this paper is to develop a new composite solder to improve the reliability of composite solder joints. Nano-particles modified multi-walled carbon nanotubes…

Abstract

Purpose

The purpose of this paper is to develop a new composite solder to improve the reliability of composite solder joints. Nano-particles modified multi-walled carbon nanotubes (Ni-MWCNTs) can indeed improve the microstructure of composite solder joints and improve the reliability of solder joints. Although many people have conducted in-depth research on the composite solder of Ni-MWCNTs. However, no one has studied the performance of Ni-MWCNTs composite solder under different aging conditions. In this article, Ni-MWCNTs was added to Sn-Ag-Cu (SAC) solder, and the physical properties of composite solder, the microstructure and mechanical properties were evaluated.

Design/methodology/approach

In this study, the effect of different aging conditions on the intermetallic compound (IMC) layer growth and shear strength of Ni-modified MWCNTs reinforced SAC composite solder was studied. Compared with SAC307 solder alloy, the influence of Ni-MWCNTs with different contents (0, 0.1 and 0.2 Wt.%) on composite solder was examined. To study the aging characteristics of composite solder joints, the solder joints were aged at 80°C, 120°C and 150°C.

Findings

The experimental results show that the content of Ni-MWCNTs affects the morphology and growth of the IMC layer at the interface. The microhardness of the solder increases and the wetting angle decreases. After aging at moderate (120°C) and high temperature (150°C), the morphology of the Cu6Sn5 IMC layer changed from scallop to lamellar and the grain size became coarser. The following two different phase compositions were observed in the solder joints with Ni-MWCNTs reinforcement: Cu3Sn and (Cu, Ni)6Sn5. The fracture surface of the solder joints all appeared ductile dents, and the size of the pits increased significantly with the increase of the aging temperature. Through growth kinetic analysis, Ni-modified MWCNTs in composite solder joints can effectively inhibit the diffusion of atoms in solder joints. In short, when the addition amount of Ni-MWCNTs is 0.1 Wt.%, the solder joints exhibit the best wettability and the highest shear strength.

Originality/value

In this study, the effects of aging conditions on the growth and shear strength of the IMC layer of Ni modified MWCNTs reinforced SAC307 composite solder were studied. The effects of Ni MWCNTs with different contents (0, 0.1 and 0.2 Wt.%) on the composite solder were examined.

Details

Soldering & Surface Mount Technology, vol. 34 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Open Access
Article
Publication date: 5 September 2016

Mario Rosario Chiarelli, Vincenzo Binante, Stefano Botturi, Andrea Massai, Jan Kunzmann, Angelo Colbertaldo and Diego Giuseppe Romano

The purpose of this study concerns numerical studies and experimental validation of the mechanical behavior of hybrid specimens. These kinds of composite specimens are made up of…

1123

Abstract

Purpose

The purpose of this study concerns numerical studies and experimental validation of the mechanical behavior of hybrid specimens. These kinds of composite specimens are made up of thin carbon and glass substrates on which some Macro Fiber Composite® (MFC) piezoelectric patches are glued. A proper design and manufacturing of the hybrid specimens as well as testing activities have been performed. The research activity has been carried out under the FutureWings project, funded by the European Commission within the 7th Framework.

Design/methodology/approach

The paper describes the basic assumptions made to define specimen geometries and to carry out experimental tests. Finite element (FE) results and experimental data (laser technique measurements) have been compared: it shows very good agreement for the displacements’ distribution along the specimens.

Findings

Within the objectives of the project, the study of passive and active deformation characteristics of the hybrid composite material has provided reference technical data and has allowed for the correct adaptation of the FE models. More in particular, using the hybrid specimens, both the bending deformations and the torsion deformations have been studied.

Practical implications

The deformation capability of the hybrid specimens will be used in the development of prototypical three-dimensional structures, that, through the electrical control of the MFC patches, will be able to change the curvature of their cross section or will be able to change the angle of torsion along their longitudinal axis.

Originality/value

The design of nonstandard specimens and the tests executed represent a novelty in the field of structures using piezoelectric actuators. The numerical and experimental data of the present research constitute a small step forward in the field of smart materials technology.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 August 2014

De-Xing Peng, Yuan Kang and Yu-Jun Huang

The purpose of this paper is to evaluate the wear performance of carbon steel cladded with TiC powders by gas tungsten arc welding method. Because of poor wear resistance, carbon…

Abstract

Purpose

The purpose of this paper is to evaluate the wear performance of carbon steel cladded with TiC powders by gas tungsten arc welding method. Because of poor wear resistance, carbon steels have limited industrial applications as tribological components.

Design/methodology/approach

The cladding microstructures were characterized by optical microscope, scanning electron microscope (SEM) and X-ray energy dispersive spectrometer. The wear behavior of the clad layer was studied with a block-on-ring tribometer.

Findings

The experimental results revealed that the metallurgical interface provided an excellent bond between the cladding and the carbon steel substrate. The cladding revealed no porosity or cracking, and particles were evenly distributed throughout the cladding layer. Hardness was increased from HRc 6.6 in the substrate to HRc 62 in the cladded layer due to the presence of the hard TiC phase.

Originality/value

The experiments confirm that the cladding surfaces of TiC particles reduce wear rate and friction. Increasing TiC contents also improves hardness and wear resistance at room temperature and under dry sliding wear conditions.

Details

Industrial Lubrication and Tribology, vol. 66 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 February 2022

Xinmeng Zhai, Yue Chen, Yuefeng Li, Jun Zou, Mingming Shi and Bobo Yang

This study aims to study the mechanical, photoelectric, and thermal reliability of SAC307 solder joints with Ni-decorated MWCNTs for flip-chip light-emitting diode (LED) package…

Abstract

Purpose

This study aims to study the mechanical, photoelectric, and thermal reliability of SAC307 solder joints with Ni-decorated MWCNTs for flip-chip light-emitting diode (LED) package component during aging. By adding nanoparticles (Ni-multi-walled carbon nanotubes [MWCNTs]) to the solder paste, the shear strength and fatigue resistance of the brazed joint can be improved. However, the aging properties of Ni-modified MWCNTs composite solder joints have not been deeply studied. In this research, the mechanical, photoelectric and thermal reliability of SAC307 packaged flip-chip LEDs with Ni-MWCNTs added during aging were studied.

Design/methodology/approach

Compared with SAC solder alloys, the effects of different contents (0, 0.05, 0.1 and 0.2 Wt.%) of Ni-MWCNTs on the photoelectric and thermal properties of composite solder joints were examined. To study the aging characteristics of composite solder joints, the solder joints were aged at 85°C/85% relative humidity.

Findings

The addition of an appropriate amount of reinforcing agent Ni-MWCNTs reduces the density of the composite solder to 96% of the theoretical value of the SAC solder alloy. In addition, the microhardness increases and the wetting angle decreases. Two different phase compositions were observed in the solder joints with Ni-MWCNTs reinforcement: Cu3Sn and (Cu, Ni)6Sn5. The solder joints of SAC307-0.1Ni-MWCNTs exhibit the highest luminous flux and luminous efficiency of flip-chip LED filaments, the lowest steady-state voltage and junction temperature. And with the extension of the aging time, its aging stability is the best. In short, when the addition amount of Ni-MWCNTs is 0.1 Wt.%, the solder joints exhibit the best wettability and the thinnest intermetallic compound layer. And the shear strength of the tested solder joints is the best, and the void ratio is the lowest. At this time, the enhancement effect of Ni-MWCNTs on the composite solder has been best demonstrated.

Research limitations/implications

The content range of enhancer Ni-MWCNTs needs to be further reduced.

Practical implications

The authors have improved the performance of Ni-modified MWCNTs composite solder joints.

Originality/value

Composite solder with high performance has great practical application significance for improving the reliability and life of the whole device.

Details

Soldering & Surface Mount Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 January 1991

H. Ohdaira, K. Yoshida and K. Sasaoka

This paper reports on the development of a simple manufacturing process for polymeric multilayer substrates utilising the thermoplasticity of thermoplastic resin. Features and…

Abstract

This paper reports on the development of a simple manufacturing process for polymeric multilayer substrates utilising the thermoplasticity of thermoplastic resin. Features and defects noted in manufacturing trials of the substrates are also reported. The process involves a polymer‐based thick film conductive paste screen printed on a hole‐punched thermoplastic resin film and dried. The films are stacked to form multiple layers and are then compressed into one unit. As the extremely thin thermoplastic resin film layers are equivalent to a single layer, a feature of this substrate is its exceptional thinness. As thermoplastic resin is used as a base material, the soldering process and other connecting technologies which may be used in place of solder connection are also examined.

Details

Circuit World, vol. 17 no. 2
Type: Research Article
ISSN: 0305-6120

Content available
Article
Publication date: 18 September 2007

34

Abstract

Details

Pigment & Resin Technology, vol. 36 no. 5
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 1 August 2016

Tibor Rovensky, Alena Pietrikova, Igor Vehec and Martin Kmec

The purpose of this paper is to create multilayer substrate (composite) from various low temperature co-fired ceramic (LTCC) substrates by their mutual combinations and to analyse…

Abstract

Purpose

The purpose of this paper is to create multilayer substrate (composite) from various low temperature co-fired ceramic (LTCC) substrates by their mutual combinations and to analyse influence of these multilayer substrates on dielectric properties in GHz frequency range.

Design/methodology/approach

GreenTape 951, GreenTape 9K7 and Murata LFC were used to create compound multilayer substrates that include three layers: middle layer is from Murata LFC, and both upper and bottom layers are either from GreenTape 951 or GreenTape 9K7. Shrinkage in all x-, y- and z-axes of all substrates including multilayer substrates were analysed, and influence of different shrinkage on dielectric properties was examined by microstrip ring resonators applied on all mentioned of substrates.

Findings

The middle layer of Murata LFC has significant influence on shrinkage value of composites which has a good repeatability and minimalizes problems with design of multilayer LTCC devices. Impact of middle layer from Murata LFC on dielectric constant is not significant, but on the other hand Q factor (loss tangent) of these composites is increased according to inhomogeneity between single LTCC layers, especially at frequency around 6 GHz.

Originality/value

The novelty of this work lies in creating multilayers systems from different types of LTCC substrates to find combination with the most suitable physical and dielectric properties for various purposes in GHz range applications.

Details

Microelectronics International, vol. 33 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 20 December 2018

Shalini Saha, Amares Chattopadhyay and Abhishek Kumar Singh

The purpose of this paper is to develop a numerical (finite-difference) model exploring phase and group velocities of SH-wave propagation in initially stressed transversely…

Abstract

Purpose

The purpose of this paper is to develop a numerical (finite-difference) model exploring phase and group velocities of SH-wave propagation in initially stressed transversely isotropic poroelastic multi-layered composite structures and initially stressed viscoelastic-dry-sandy multi-layered composite structures in two distinct cases.

Design/methodology/approach

With the aid of relevant constitutive relations, the non-vanishing equations of motions for the propagation SH-wave in the considered composite structures have been derived. Haskell matrix method and finite-difference scheme are adopted to deduce velocity equation for both the cases. Stability analysis for the adopted finite-difference scheme has been carried out and the expressions for phase as well as group velocity in terms of dispersion-parameter and stability-ratio have been deduced.

Findings

Velocity equations are derived for the propagation of SH-wave in both the composite structures. The obtained results are matched with the classical results for the case of double and triple-layered composite structure along with comparative analysis. Stability analysis have been carried out to develop expressions of phase as well as group velocity in terms of dispersion-parameter and stability-ratio. The effect of wavenumber, dispersion parameter along with initial-stress, porosity, sandiness, viscoelasticity, stability ratio, associated with the said composite structures on phase, damped and group velocities of SH-wave has been unveiled.

Originality/value

To the best of authors’ knowledge, numerical modelling and analysis of propagation characteristics of SH-wave in multi-layered initially stressed composite structures composed of transversely isotropic poroelastic materials and viscoelastic-dry-sandy materials remain unattempted inspite of its importance and relevance in many branches of science and engineering.

Details

Engineering Computations, vol. 36 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 January 2018

Marlon Wesley Machado Cunico and Jonas de Carvalho

During the past years, numerous market segments have increasingly adopted additive manufacturing technologies for product development and complex parts design. Consequently…

Abstract

Purpose

During the past years, numerous market segments have increasingly adopted additive manufacturing technologies for product development and complex parts design. Consequently, recent developments have expanded the technologies, materials and applications in support of emerging needs, in addition to improving current processes. The present work aims to propose and characterise a new technology that is based on selective formation of metal-polymer composites with low power source.

Design/methodology/approach

To develop this project, the authors have divided this work in three parts: material development, process feasibility and process optimisation. For the polymeric material development, investigation of metallic and composite materials assessed each material’s suitability for selective composite formation besides residual material removal. The primary focus was the evaluation of proposed process feasibility. The authors applied multivariable methods, where the main responses were line width, penetration depth, residual material removal feasibility, layer adherence strength, mechanical strength and dimensional deviation of resultant object. The laser trace speed, distance between formation lines and laser diameter were the main variables. Removal agent and polymeric material formulation were constants. In the last part of this work, the authors applied a multi-objective optimisation. The optimisation objectives minimized processing time and dimensional deviation while maximizing mechanical strength in xy direction and mechanical strength in z direction.

Findings

With respect to material development, the polymeric material tensile strength was found between 30 and 45 MPa at break. It was also seen that this material has low viscosity before polymerized (between 2 and 20 cP) essential for composite formation and complete material removal. In that way, the authors also identified that the residual material removal process was possible by redox reaction. In contrast with that the final object was marked by the polymer which covers the metallic matrix, protecting the object protects against chemical reactions. For the feasibility study, the authors identified the process windows for adherence between composite layers, demonstrating the process feasibility. The composite mechanical strength was shown to be between 120 and 135 MPa in xy direction and between 35 and 45 MPa in z direction. In addition, the authors have also evidenced that the geometrical dimensional distortion might vary until 5 mm, depending on process configuration. Despite that, the authors identified an optimised configuration that exposes the potential application of this new technology. As this work is still in a preliminary development stage, further studies are needed to be done to better understand the process and market segments wherein it might be applied.

Originality/value

This paper proposed a new and innovative additive manufacturing technology which is based on metal-polymer composites using low power source. Additionally, this work also described studies related to the investigation of concept feasibility and proposed process characterisation. The authors have focused on material development and studied the functional feasibility, which at the same time might be useful to the development of other additive manufacturing processes.

Details

Rapid Prototyping Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 2000