Search results

1 – 10 of over 4000
Article
Publication date: 18 October 2018

Zhicheng Huang, Jean-Yves Dantan, Alain Etienne, Mickaël Rivette and Nicolas Bonnet

One major problem preventing further application and benefits from additive manufacturing (AM) nowadays is that AM build parts always end up with poor geometrical quality. To help…

Abstract

Purpose

One major problem preventing further application and benefits from additive manufacturing (AM) nowadays is that AM build parts always end up with poor geometrical quality. To help improving geometrical quality for AM, this study aims to propose geometrical deviation identification and prediction method for AM, which could be used for identifying the factors, forms and values of geometrical deviation of AM parts.

Design/methodology/approach

This paper applied the skin model-based modal decomposition approach to describe the geometrical deviations of AM and decompose them into different defect modes. On that basis, the approach to propose and extend defect modes was developed. Identification and prediction of the geometrical deviations were then carried out with this method. Finally, a case study with cylinders manufactured by fused deposition modeling was introduced. Two coordinate measuring machine (CMM) machines with different measure methods were used to verify the effectiveness of the methods and modes proposed.

Findings

The case study results with two different CMM machines are very close, which shows that the method and modes proposed by this paper are very effective. Also, the results indicate that the main geometrical defects are caused by the shrinkage and machine inaccuracy-induced errors which have not been studied enough.

Originality/value

This work could be used for identifying and predicting the forms and values of AM geometrical deviation, which could help realize the improvement of AM part geometrical quality in design phase more purposefully.

Details

Rapid Prototyping Journal, vol. 24 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 22 December 2022

Carolina Bermudo Gamboa, Sergio Martín Béjar, Francisco Javier Trujillo Vilches and Lorenzo Sevilla Hurtado

The purpose of this study is to cover the influence of selected printing parameters at a macro and micro-geometrical level, focusing on the dimensions, geometry and surface of…

Abstract

Purpose

The purpose of this study is to cover the influence of selected printing parameters at a macro and micro-geometrical level, focusing on the dimensions, geometry and surface of printed parts with short carbon fibers reinforced PLA. For this case study, a hollow cylindrical shape is considered, aiming to cover the gap detected in previous works analyzed.

Design/methodology/approach

Nowadays, additive manufacturing plays a very important role in the manufacturing industry, as can be seen through its numerous research and applications that can be found. Within the engineering industry, geometrical tolerances are essential for the functionality of the parts and their assembly, but the variability in three-dimensional (3D) printing makes dimensional control a difficult task. Constant development in 3D printing allows, more and more, printed parts with controlled and narrowed geometrical deviations and tolerances. So, it is essential to continue narrowing the studies to achieve the optimal printed parts, optimizing the manufacturing process as well.

Findings

Results present the relation between the selected printing parameters and the resulting printed part, showing the main deviations and the eligible values to achieve a better tolerance control. Also, from these results obtained, we present a parametric model that relates the geometrical deviations considered in this study with the printing parameters. It can provide an overview of the piece before printing it and so, adjusting the printing parameters and reducing time and number of printings to achieve a good part.

Originality/value

The main contribution is the study of the geometry selected under a 3D printing process, which is important because it considers parts that are created to fit together and need to comply with the required tolerances. Also, we consider that the parametric model can be a suitable approach to selecting the optimal printing parameters before printing.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 December 2017

Haidong Yu, Chunzhang Zhao, Bin Zheng and Hao Wang

Thin-walled structures inevitably always have manufacturing deviations, which affects the assembly quality of mechanical products. The assembly quality directly determines the…

Abstract

Purpose

Thin-walled structures inevitably always have manufacturing deviations, which affects the assembly quality of mechanical products. The assembly quality directly determines the performances, reliability and service life of the products. To achieve the automatic assembly of large-scale thin-walled structures, the sizing force of the structures with deviations should be calculated, and its assembling ability should be studied before assembly process. The purpose of this study is to establish a precise model to describe the deviations of structures and to study the variation propagation during assembly process.

Design/methodology/approach

Curved thin-walled structures are modeled by using the shell element via the absolute nodal coordinate formulation. Two typical deviation modes of the structure are defined. The generalized elastic force of shell elements with anisotropic materials is deduced based on a continuum mechanics approach to account for the geometric non-linearity. The quasi-static method is introduced to describe the assembly process. The effects of the deviation forms, geometrical parameters of the thin-walled structures and material properties on assembly quality are investigated numerically.

Findings

The geometric non-linearity of structure and anisotropy of materials strongly affect the variation propagation and the assembly quality. The transformation and accumulation effects of the deviations are apparent in the multiple assembly process. The constraints on the structures during assembly can reduce assembly deviation.

Originality/value

The plate element via the absolute nodal coordinate formulation is first introduced to the variation propagation analysis. Two typical shape deviation modes are defined. The elastic force of structures with anisotropic materials is deduced. The variation propagation during the assembly of structures with various geometrical and material parameters is investigated.

Article
Publication date: 7 November 2019

Xun Xu, Haidong Yu, Yunyong Li and Xinmin Lai

The structure stiffness is greatly affected by the fixture constraints during assembly due to the flexibility of large-scale thin-walled structures. The compliant deformation of…

Abstract

Purpose

The structure stiffness is greatly affected by the fixture constraints during assembly due to the flexibility of large-scale thin-walled structures. The compliant deformation of structures is usually not consistent for the non-uniform stiffness in various clamping schemes. The purpose of this paper is to investigate the correlation between the assembly quality and the clamping schemes of structures with various initial deviations and geometrical parameters, which is based on the proposed irregular quadrilateral plate element via absolute nodal coordinate formulation (ANCF).

Design/methodology/approach

Two typical clamping schemes are specified for the large-scale thin-walled structures. Two typical deviation modes are defined in both free and clamping states in the corresponding clamping schemes. The new irregular quadrilateral plate element via ANCF is validated to analyze the compliant deformation of assembled structures. The quasi-static force equilibrium equations are extended considering the factors of clamping constraints and geometric deviations.

Findings

The initial deviations and geometrical parameters strongly affect the assembly deviations of structures in two clamping schemes. The variation tendencies of assembly deviations are demonstrated in details with the circumferential clamping position and axial clamping position in two clamping schemes, providing guidance to optimize the fixture configuration. The assembly quality of structures with deviations can be improved by configuration synthesis of the clamping schemes.

Originality/value

Typical over-constraint clamping schemes and deviation modes in clamping states are defined for large-scale thin-walled structures. The plate element via ANCF is extended to analyze the assembly deviations of thin-walled structures in various clamping schemes. Based on the proposed theoretical model, the effects of clamping schemes and initial deviations on the deformation and assembly deviation propagation of structures are investigated.

Details

Assembly Automation, vol. 40 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 22 June 2012

Maher Barkallah, Karim Jaballi, Jamel Louati and Mohamed Haddar

The purpose of this paper is to present an experimental approach to measure and quantify the three‐dimensional geometrical manufacturing errors on a mass production of parts.

Abstract

Purpose

The purpose of this paper is to present an experimental approach to measure and quantify the three‐dimensional geometrical manufacturing errors on a mass production of parts.

Design/methodology/approach

A methodology is developed to model and analyse the combined effect of these errors on a machined feature. Deviation of a machined feature due to the combined errors is expressed in terms of the small displacement torsor (SDT) parameters. Given a tolerance on the machined feature, constraints are specified for that feature to establish a relationship between the tolerance zone of the feature and the torsor parameters. These constraints provide boundaries within which the machined feature must lie. This is used for tolerance analysis of the machined feature. An experimental approach is proposed to measure and quantify the three‐dimensional manufacturing variations as torsors. The results are used to verify the analytical model.

Findings

Results show that it is possible to quantify manufacturing dispersions. The paper proposes a measuring method which can be done during the production. In the context of process planning, these experimental data allow us to perform realistic geometrical simulation of manufacturing. The results of this method are torsor components dispersions. Analysis and synthesis of the geometrical simulation of manufacturing are viable with reliable numerical data in order to predict the defects.

Originality/value

To perform realistic geometrical simulation of manufacturing, an experimental approach to measure and quantify the three‐dimensional geometrical manufacturing errors is proposed which is based on the SDT concept.

Details

Multidiscipline Modeling in Materials and Structures, vol. 8 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 January 2018

Andrea Corrado, Wilma Polini, Giovanni Moroni and Stefano Petrò

The purpose of this work is to present a variational model able to deal with form tolerances and assembly conditions. The variational model is one of the methods proposed in…

Abstract

Purpose

The purpose of this work is to present a variational model able to deal with form tolerances and assembly conditions. The variational model is one of the methods proposed in literature for tolerance analysis, but it cannot deal with form tolerances and assembly conditions that may influence the functional requirements of mechanical assemblies.

Design/methodology/approach

This work shows how to manage the actual surfaces generated by the manufacturing process and the operating conditions inside the variational model that has been modified to integrate the manufacturing signature left on the surfaces of the parts and the operating conditions that arise during an actual assembly, such as gravity and friction. Moreover, a geometrical model was developed to numerically simulate what happens in a real assembly process and to give a reference value.

Findings

The new variational model was applied to a three-dimensional case study. The obtained results were compared to those of the geometrical model and to those of the variational model to validate the new model and to show the improvements.

Research limitations/implications

The proposed approach may be extended to other models of literature. However, its limitation is that it is able to deal with a sphere–plane contact.

Practical implications

Tolerance analysis is a valid tool to foresee geometric interferences among the components of an assembly before getting the physical assembly. It involves a decrease in the manufacturing costs.

Originality/value

The main contributions of the study are the insertion of a systematic pattern characterizing the features manufactured by a process, assembly operating conditions and development of a geometrical model to reproduce what happens in a real assembly process.

Details

Assembly Automation, vol. 38 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 February 2016

Wilma Polini and Andrea Corrado

The purpose of this paper is to carry out a tolerance analysis with geometric tolerances by means of the Jacobian model. Tolerance analysis is an important task to design and to…

Abstract

Purpose

The purpose of this paper is to carry out a tolerance analysis with geometric tolerances by means of the Jacobian model. Tolerance analysis is an important task to design and to manufacture high-precision mechanical assemblies; it has received considerable attention by the literature. The Jacobian model is one of the methods proposed by the literature for tolerance analysis. The Jacobian model cannot deal with geometric tolerances for mechanical assemblies. The geometric tolerances may not be neglected for assemblies, as they significantly influence their functional requirements.

Design/methodology/approach

This paper presents how it is possible to deal with geometric tolerances when a tolerance analysis is carried out by means of a Jacobian model for a 2D and 3D assemblies for which the geometric tolerances applied to the components involve only translational deviations. The three proposed approaches modify the expression of the stack-up function to overcome the shortage of Jacobian model that the geometric error cannot be processed.

Findings

The proposed approach has been applied to a case study. The results of the case study show how, when a statistical approach is implemented, the Jacobian model with the three developed methods gives results very similar to those due to other models of the literature, such as vector loop and variational.

Research limitations/implications

In particular, the proposed approach may be applied only when the applied geometrical tolerances involve translational variations in 3D assemblies.

Practical implications

Tolerance analysis is a valid tool to foresee geometric interferences among the components of an assembly before getting the physical assembly. It involves a decrease of the manufacturing costs.

Originality/value

The original contribution of the paper is due to three methods to make a Jacobian model able to consider form and geometric deviations.

Details

Assembly Automation, vol. 36 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 10 May 2019

Wilma Polini and Andrea Corrado

The purpose of this paper is to model how geometric errors of a machined surface (or manufacturing errors) are related to locators’ error, workpiece form error and machine tool…

Abstract

Purpose

The purpose of this paper is to model how geometric errors of a machined surface (or manufacturing errors) are related to locators’ error, workpiece form error and machine tool volumetric error. A kinematic model is presented that puts into relationship the locator error, the workpiece form deviations and the machine tool volumetric error.

Design/methodology/approach

The paper presents a general and systematic approach for geometric error modelling in drilling because of the geometric errors of locators positioning, of workpiece datum surface and of machine tool. The model can be implemented in four steps: (1) calculation of the deviation in the workpiece reference frame because of deviations of locator positions; (2) evaluation of the deviation in the workpiece reference frame owing to form deviations in the datum surfaces of the workpiece; (3) formulation of the volumetric error of the machine tool; and (4) combination of those three models.

Findings

The advantage of this approach lies in that it enables the source errors affecting the drilling accuracy to be explicitly separated, thereby providing designers and/or field engineers with an informative guideline for accuracy improvement through suitable measures, i.e. component tolerancing in design, machining and so on. Two typical drilling operations are taken as examples to illustrate the generality and effectiveness of this approach.

Research limitations/implications

Some source errors, such as the dynamic behaviour of the machine tool, are not taken into consideration, which will be modelled in practical applications.

Practical implications

The proposed kinematic model may be set by means of experimental tests, concerning the industrial specific application, to identify the values of the model parameters, such as standard deviation of the machine tool axes positioning and rotational errors. Then, it may be easily used to foresee the location deviation of a single or a pattern of holes.

Originality/value

The approaches present in the literature aim to model only one or at most two sources of machining error, such as fixturing, machine tool or workpiece datum. This paper goes beyond the state of the art because it considers the locator errors together with the form deviation on the datum surface into contact with the locators and, then, the volumetric error of the machine tool.

Details

Engineering Computations, vol. 36 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 2016

Jian-feng Yu, Wen-Bin Tang, Yuan Li and Jie Zhang

Modeling and analysis of dimensional variation propagation is a crucial support technology for variation reduction, product/process design evaluation and recognition of variation…

Abstract

Purpose

Modeling and analysis of dimensional variation propagation is a crucial support technology for variation reduction, product/process design evaluation and recognition of variation source. However, owing to the multi-deviation (i.e. part deviations and fixture deviations) and multi-interaction (i.e. part-to-part interaction, part-to-fixture interaction and station-to-station interaction) in assembly processes, it is difficult for designers to describe or understand the variation propagation (or accumulation) mechanism clearly. The purpose of this paper is to propose a variation propagation modeling and analysis (VPMA) method based on multiple constraints aiming at a single station.

Design/methodology/approach

Initially, part-to-part constraints (PPCs) and part-to-fixture constraints (PFCs) are applied for the multi-interaction of assembly, and multiple constraints graph (MCG) model is proposed for expressing PPCs, PFCs, parts, as well as the variation propagation relation among them. Then, locating points (LPs) are adopted for representing the deviations in constraints, and formulas for calculating the deviations of LPs are derived. On that basis, a linearized relation between LPs’ deviations and part’s locating deviations is derived. Finally, a wing box is presented to validate the proposed method, and the results indicate the methodology’s feasibility.

Findings

MCG is an effective tool for dimensional VPMA, which is shown as an example of this paper.

Originality/value

Functions of geometric constraints in dimensional variation propagation are revealed, and MCG is proposed to formulize dimensional variation propagation.

Article
Publication date: 10 February 2020

Dongping Zhao, Gangfeng Wang, Jizhuang Hui, Wei Hou and Richard David Evans

The assembly quality of complex products is pivotal to their lifecycle performance. Assembly precision analysis (APA) is an effective method used to check the feasibility and…

Abstract

Purpose

The assembly quality of complex products is pivotal to their lifecycle performance. Assembly precision analysis (APA) is an effective method used to check the feasibility and quality of assembly. However, there is still a need for a systematic approach to be developed for APA of kinematic mechanisms. To achieve more accurate analysis of kinematic assembly, this paper aims to propose a precision analysis method based on equivalence of the deviation source.

Design/methodology/approach

A unified deviation vector representation model is adopted by considering dimension deviation, geometric deviation, joint clearance and assembly deformation. Then, vector loops and vector equations are constructed, according to joint type and deviation propagation path. A combined method, using deviation accumulation and sensitivity modeling, is applied to solve the kinematic APA of complex products.

Findings

When using the presented method, geometric form deviation, joint clearance and assembly deformation are considered selectively during tolerance modeling. In particular, the proposed virtual link model and its orientation angle are developed to determine joint deviation. Finally, vector loops and vector equations are modeled to express deviation accumulation.

Originality/value

The proposed method provides a new means for the APA of complex products, considering joint clearance and assembly deformation while improving the accuracy of APA, as much as possible.

Details

Assembly Automation, vol. 40 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of over 4000