Search results

1 – 10 of over 1000
Article
Publication date: 8 October 2018

Clinton B. Morris, John M. Cormack, Mark F. Hamilton, Michael R. Haberman and Carolyn C. Seepersad

Microstereolithography is capable of producing millimeter-scale polymer parts having micron-scale features. Material properties of the cured polymers can vary depending on build…

Abstract

Purpose

Microstereolithography is capable of producing millimeter-scale polymer parts having micron-scale features. Material properties of the cured polymers can vary depending on build parameters such as exposure. Current techniques for determining the material properties of these polymers are limited to static measurements via micro/nanoindentation, leaving the dynamic response undetermined. The purpose of this paper is to demonstrate a method to measure the dynamic response of additively manufactured parts to infer the dynamic modulus of the material in the ultrasonic range.

Design/methodology/approach

Frequency-dependent material parameters, such as the complex Young’s modulus, have been determined for other relaxing materials by measuring the wave speed and attenuation of an ultrasonic pulse traveling through the materials. This work uses laser Doppler velocimetry to measure propagating ultrasonic waves in a solid cylindrical waveguide produced using microstereolithography to determine the frequency-dependent material parameters of the polymer. Because the ultrasonic wavelength is comparable with the part size, a model that accounts for both geometric and viscoelastic dispersive effects is used to determine the material properties using experimental data.

Findings

The dynamic modulus in the ultrasonic range of 0.4-1.3 MHz was determined for a microstereolithography part. Results were corroborated by using the same experimental method for an acrylic part with known properties and by evaluating the natural frequency and storage modulus of the same microstereolithography part with a shaker table experiment.

Originality/value

The paper demonstrates a method for determining the dynamic modulus of additively manufactured parts, including relatively small parts fabricated with microstereolithography.

Details

Rapid Prototyping Journal, vol. 24 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 7 September 2012

140

Abstract

Details

Sensor Review, vol. 32 no. 4
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 17 April 2024

Vidyut Raghu Viswanath, Shivashankar Hiremath and Dundesh S. Chiniwar

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings…

Abstract

Purpose

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings, such as raster angle, infill and orientation to improve the 3D component qualities while fabricating the sample using a 3D printer. However, the influence of these factors on the characteristics of the 3D parts has not been well explored. Owing to the effect of the different print parameters in fused deposition modeling (FDM) technology, it is necessary to evaluate the strength of the parts manufactured using 3D printing technology.

Design/methodology/approach

In this study, the effect of three print parameters − raster angle, build orientation and infill − on the tensile characteristics of 3D-printed components made of three distinct materials − acrylonitrile styrene acrylate (ASA), polycarbonate ABS (PC-ABS) and ULTEM-9085 − was investigated. A variety of test items were created using a commercially accessible 3D printer in various configurations, including raster angle (0°, 45°), (0°, 90°), (45°, −45°), (45°, 90°), infill density (solid, sparse, sparse double dense) and orientation (flat, on-edge).

Findings

The outcome shows that variations in tensile strength and force are brought on by the effects of various printing conditions. In all possible combinations of the print settings, ULTEM 9085 material has a higher tensile strength than ASA and PC-ABS materials. ULTEM 9085 material’s on-edge orientation, sparse infill, and raster angle of (0°, −45°) resulted in the greatest overall tensile strength of 73.72 MPa. The highest load-bearing strength of ULTEM material was attained with the same procedure, measuring at 2,932 N. The tensile strength of the materials is higher in the on-edge orientation than in the flat orientation. The tensile strength of all three materials is highest for solid infill with a flat orientation and a raster angle of (45°, −45°). All three materials show higher tensile strength with a raster angle of (45°, −45°) compared to other angles. The sparse double-dense material promotes stronger tensile properties than sparse infill. Thus, the strength of additive components is influenced by the combination of selected print parameters. As a result, these factors interact with one another to produce a high-quality product.

Originality/value

The outcomes of this study can serve as a reference point for researchers, manufacturers and users of 3D-printed polymer material (PC-ABS, ASA, ULTEM 9085) components seeking to optimize FDM printing parameters for tensile strength and/or identify materials suitable for intended tensile characteristics.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 November 2018

Fuda Ning, Yingbin Hu and Weilong Cong

The purpose of this paper is to identify if the implementation of ultrasonic vibration in laser engineered net shaping (LENS) process can help to reduce internal weaknesses such…

748

Abstract

Purpose

The purpose of this paper is to identify if the implementation of ultrasonic vibration in laser engineered net shaping (LENS) process can help to reduce internal weaknesses such as porosity, coarse primary TiB whisker and heterogeneous distribution of TiB reinforcement in the LENS-fabricated TiB reinforced Ti matrix composites (TiB-TMC) parts.

Design/methodology/approach

An experimental investigation is performed to achieve the results for comparative studies under different fabrication conditions through quantitative data analysis. An approach of microstructural characterization and mechanical testing is conducted to obtain the output attributes. In addition, the theoretical analysis of the physics of ultrasonic vibration in the melting materials is presented to explain the influences of ultrasonic vibration on the microstructural evolution occurred in the part fabrication.

Findings

Because of the nonlinear effects of acoustic streaming and cavitation induced by ultrasonic vibration, porosity is significantly reduced and a relatively small variation of pore sizes is achieved. Ultrasonic vibration also causes the formation of smaller TiB whiskers that distribute along grain boundaries with a homogeneous dispersion. Additionally, a quasi-continuous network (QCN) microstructure is considerably finer than that produced by LENS process without ultrasonic vibration. The refinements of both reinforcing TiB whiskers and QCN microstructural grains further improve the microhardness of TiB-TMC parts.

Originality/value

The novel ultrasonic vibration-assisted (UV-A) LENS process of TiB-TMC is conducted in this work for the first time to improve the process performance and part quality.

Details

Rapid Prototyping Journal, vol. 25 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 February 2022

Rui Zhang, Na Zhao, Liuhu Fu, Lihu Pan, Xiaolu Bai and Renwang Song

This paper aims to propose a new ultrasonic diagnosis method for stainless steel weld defects based on multi-domain feature fusion to solve two problems in the ultrasonic

Abstract

Purpose

This paper aims to propose a new ultrasonic diagnosis method for stainless steel weld defects based on multi-domain feature fusion to solve two problems in the ultrasonic diagnosis of austenitic stainless steel weld defects. These are insufficient feature extraction and subjective dependence of diagnosis model parameters.

Design/methodology/approach

To express the richness of the one-dimensional (1D) signal information, the 1D ultrasonic testing signal was derived to the two-dimensional (2D) time-frequency domain. Multi-scale depthwise separable convolution was also designed to optimize the MobileNetV3 network to obtain deep convolution feature information under different receptive fields. At the same time, the time/frequent-domain feature extraction of the defect signals was carried out based on statistical analysis. The defect sensitive features were screened out through visual analysis, and the defect feature set was constructed by cascading fusion with deep convolution feature information. To improve the adaptability and generalization of the diagnostic model, the authors designed and carried out research on the hyperparameter self-optimization of the diagnostic model based on the sparrow search strategy and constructed the optimal hyperparameter combination of the model. Finally, the performance of the ultrasonic diagnosis of stainless steel weld defects was improved comprehensively through the multi-domain feature characterization model of the defect data and diagnosis optimization model.

Findings

The experimental results show that the diagnostic accuracy of the lightweight diagnosis model constructed in this paper can reach 96.55% for the five types of stainless steel weld defects, including cracks, porosity, inclusion, lack of fusion and incomplete penetration. These can meet the needs of practical engineering applications.

Originality/value

This method provides a theoretical basis and technical reference for developing and applying intelligent, efficient and accurate ultrasonic defect diagnosis technology.

Article
Publication date: 3 December 2019

Adam Hehr and Mark Norfolk

This paper aims to comprehensively review ultrasonic additive manufacturing (UAM) process history, technology advancements, application areas and research areas. UAM, a hybrid 3D…

1580

Abstract

Purpose

This paper aims to comprehensively review ultrasonic additive manufacturing (UAM) process history, technology advancements, application areas and research areas. UAM, a hybrid 3D metal printing technology, uses ultrasonic energy to produce metallurgical bonds between layers of metal foils near room temperature. No melting occurs in the process – it is a solid-state 3D metal printing technology.

Design/methodology/approach

The paper is formatted chronologically to help readers better distinguish advancements and changes in the UAM process through the years. Contributions and advancements are summarized by academic or research institution following this chronological format.

Findings

This paper summarizes key physics of the process, characterization methods, mechanical properties, past and active research areas, process limitations and application areas.

Originality/value

This paper reviews the UAM process for the first time.

Details

Rapid Prototyping Journal, vol. 26 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 March 2016

Adam Hehr, Paul J. Wolcott and Marcelo J. Dapino

Ultrasonic additive manufacturing (UAM) is a fabrication technology based on ultrasonic metal welding. As a solid-state process, temperatures during UAM fabrication reach a…

Abstract

Purpose

Ultrasonic additive manufacturing (UAM) is a fabrication technology based on ultrasonic metal welding. As a solid-state process, temperatures during UAM fabrication reach a fraction of the melting temperatures of the participating metals. UAM parts can become mechanically compliant during fabrication, which negatively influences the ability of the welder to produce consistent welds. This study aims to evaluate the effect of weld power on weld quality throughout a UAM build, and develop a new power-compensation approach to achieve homogeneous weld quality.

Design/methodology/approach

The study utilizes mechanical push-pin testing as a metric of delamination resistance, as well as focused ion beam and scanning electron microscopy to analyze the interface microstructure of UAM parts.

Findings

Weld power was found to negatively affect mechanical properties and microstructure. By keeping weld power constant, the delamination energy of UAM coupons was increased 22 per cent along with a consistent grain structure. As a result, to ensure constant properties throughout UAM component construction, maintaining weld power is preferable over the conventional strategy based on amplitude control.

Research limitations/implications

Further characterization could be conducted to evaluate the power control strategy on other material combinations, though this study strongly suggests that the proposed approach should work regardless of the metals being welded.

Practical implications

The proposed power control strategy can be implemented by monitoring and controlling the electrical power supplied to the welder. As such, no additional hardware is required, making the approach both useful and straightforward to implement.

Originality/value

This research paper is the first to recognize and address the negative effect of build compliance on weld power input in UAM. This is also the first paper to correlate measured weld power with the microstructure and mechanical properties of UAM parts.

Details

Rapid Prototyping Journal, vol. 22 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 March 2016

Fei Zhong, Chunlei Zhang, Wensheng Li, Jingpin Jiao and Liqiang Zhong

Super304H steel is a new fine-grained austenitic heat-resistant stainless steel developed in recent years, and it is widely used in high temperature section superheater and…

Abstract

Purpose

Super304H steel is a new fine-grained austenitic heat-resistant stainless steel developed in recent years, and it is widely used in high temperature section superheater and reheater tubes of ultra-supercritical thermal power units’ boiler. Currently intergranular corrosion (IGC) has occurred in a few austenitic stainless steel tubes in ultra-supercritical units and led to boiler leakage. The purpose of this paper is to find a nondestructive method to quickly and easily detect IGC of austenitic stainless steel tube.

Design/methodology/approach

This paper uses the nonlinear characteristics of ultrasonic propagation in steel tube to detect the IGC of Super304H tube.

Findings

The experimental results show that the nonlinear coefficient generally increases sensitively with the degree of IGC; hence, the nonlinear coefficient can be used to assess IGC degree of tubes, and the nonlinear coefficient measurement method is repeatable for the same tube.

Research limitations/implications

A theory of how IGC would affect the ultrasonic signals and lead to a nonlinear response needs further research.

Practical implications

A nondestructive method to quickly and easily detect IGC is provided.

Social implications

Using ultrasonic nonlinear coefficient to assess IGC degree of tubes is a new try.

Originality/value

This paper provides a new way to test IGC.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 November 2014

X.R. Zhang, L.Z. Liu, J.F. Li, W.W. Cui and L. Weng

The key purpose of this study was to investigate the effects of different ultrasonic irradiation times on the wettability and other properties of the resulting water-based…

Abstract

Purpose

The key purpose of this study was to investigate the effects of different ultrasonic irradiation times on the wettability and other properties of the resulting water-based coating. The subject water-based coating was prepared using water-soluble polyester and amino resins by ultrasonic oscillation.

Design/methodology/approach

The coating was prepared by polymerising polyester and amino resins in water using ultrasonic oscillation. The coating was baked for 40 seconds at 350°C to coalesce and solidify the film. The contact angle, thermal stability and mechanical properties of the film, as well as the molecular weight (MW) and structure of the polyester resin, were determined.

Findings

The contact angle of the coating was found to decrease with ultrasonic irradiation; the mechanical properties and thermal stability were not altered when the irradiation time was longer than 5 hours. The MW of the polyester initially decreased then increased and stabilized with ultrasonic irradiation. The structure of polyester molecule and aggregated state of the solidified coating were not changed by ultrasonic irradiation.

Research limitations/implications

In the study reported here, the effects of different ultrasonic irradiation times were investigated. Results of this research could benefit in-depth understanding of the influence of ultrasonic treatment on polyester resins and polyester coatings and could further promote the development of water-based coatings.

Originality/value

The contact angle of the water-based coating decreased by mechanical means. The effects of ultrasound on microstructure and properties of the coating and resin were discussed in detail.

Details

Pigment & Resin Technology, vol. 43 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 21 June 2011

Pramod Kumar Yadawa

The purpose of this paper is to evaluate the second‐ and third‐order elastic constants (SOEC and TOEC) and then velocities and attenuation of ultrasonic waves along unique…

273

Abstract

Purpose

The purpose of this paper is to evaluate the second‐ and third‐order elastic constants (SOEC and TOEC) and then velocities and attenuation of ultrasonic waves along unique direction in hexagonal II‐VI group semiconductors, cadmium chalcogenides (CdS, CdSe and CdTe) compounds at room temperature and obtained the ultrasonic behaviour and mechanical properties of these compounds.

Design/methodology/approach

Lennard‐Jones potential approach is applied to evaluate the SOEC and TOEC.

Findings

The value of ultrasonic attenuation of CdSe is smallest in comparison to other chosen materials. So, CdSe is more ductile and more pure than others. Thus, the mechanical properties of CdSe are better than those of CdS and CdTe, because CdSe has high‐elastic constants and low‐ultrasonic attenuation.

Originality/value

Obtained results, together with other well‐known physical properties, may expand future prospects for the industrial applications and study of these semiconductor materials.

Details

Multidiscipline Modeling in Materials and Structures, vol. 7 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 1000