Search results

1 – 10 of over 2000
Article
Publication date: 28 September 2018

Osama Abdulhameed, Abdurahman Mushabab Al-Ahmari, Wadea Ameen and Syed Hammad Mian

Hybrid manufacturing technologies combining individual processes can be recognized as one of the most cogent developments in recent times. As a result of integrating additive

Abstract

Purpose

Hybrid manufacturing technologies combining individual processes can be recognized as one of the most cogent developments in recent times. As a result of integrating additive, subtractive and inspection processes within a single system, the relative benefits of each process can be exploited. This collaboration uses the strength of the individual processes, while decreasing the shortcomings and broadening the application areas. Notwithstanding its numerous advantages, the implementation of hybrid technology is typically affected by the limited process planning methods. The process planning methods proficient at effectively using manufacturing sources for hybridization are notably restrictive. Hence, this paper aims to propose a computer-aided process planning system for hybrid additive, subtractive and inspection processes. A dynamic process plan has been developed, wherein an online process control with intelligent and autonomous characteristics, as well as the feedback from the inspection, is utilized.

Design/methodology/approach

In this research, a computer-aided process planning system for hybrid additive, subtractive and inspection process has been proposed. A framework based on the integration of three phases has been designed and implemented. The first phase has been developed for the generation of alternative plans or different scenarios depending on machining parameters, the amount of material to be added and removed in additive and subtractive manufacturing, etc. The primary objective in this phase has been to conduct set-up planning, process selection, process sequencing, selection of machine parameters, etc. The second phase is aimed at the identification of the optimum scenario or plan.

Findings

To accomplish this goal, economic models for additive and subtractive manufacturing were used. The objective of the third phase was to generate a dynamic process plan depending on the inspection feedback. For this purpose, a multi-agent system has been used. The multi-agent system has been used to achieve intelligence and autonomy of different phases.

Practical implications

A case study has been developed to test and validate the proposed algorithm and establish the performance of the proposed system.

Originality/value

The major contribution of this work is the novel dynamic computer-aided process planning system for the hybrid process. This hybrid process is not limited by the shortcomings of the constituent processes in terms of tool accessibility and support volume. It has been established that the hybrid process together with an appropriate computer-aided process plan provides an effective solution to accurately fabricate a variety of complex parts.

Details

Rapid Prototyping Journal, vol. 24 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 March 2018

Jingbin Hao, Xin Chen, Hao Liu and Shengping Ye

To remanufacture a disused part, a hybrid process needs to be taken in part production. Therefore, a reasonable machining route is necessary to be developed for the hybrid

Abstract

Purpose

To remanufacture a disused part, a hybrid process needs to be taken in part production. Therefore, a reasonable machining route is necessary to be developed for the hybrid process. This paper aims to develop a novel process planning algorithm for additive and subtractive manufacturing (ASM) system to achieve this purpose.

Design/methodology/approach

First, a skeleton of the model is generated by using thinning algorithm. Then, the skeleton tree is constructed based on topological structure and shape feature. Further, a feature matching algorithm is developed for recognizing the different features between the initial model and the final model based on the skeleton tree. Finally, a reasonable hybrid machining route of the ASM system is generated in consideration of the machining method of each different sub-feature.

Findings

This paper proposes a hybrid process planning algorithm for the ASM system. Further, it generates new process planning insights on the hybrid process service provider market.

Practical implications

The proposed process planning algorithm enables engineers to obtain a proper hybrid machining route before product fabrication. And thereby, it extends the machining capability of the hybrid process to manufacture some parts accurately and efficiently.

Originality/value

This study addresses one gap in the hybrid process literature. It develops the first hybrid process planning strategy for remanufacturing of disused parts based on skeleton tree matching, which generates a more proper hybrid machining route than the currently available hybrid strategy studies. Also, this study provides technical support for the ASM system to repair damaged parts.

Details

Rapid Prototyping Journal, vol. 24 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 April 2017

Danielle Strong, Issariya Sirichakwal, Guha P. Manogharan and Thomas Wakefield

This paper aims to investigate the extent to which traditional manufacturers are equipped and interested in participating in a hybrid manufacturing system which integrates…

1376

Abstract

Purpose

This paper aims to investigate the extent to which traditional manufacturers are equipped and interested in participating in a hybrid manufacturing system which integrates traditional processes such as machining and grinding with additive manufacturing (AM) processes.

Design/methodology/approach

A survey was conducted among traditional metal manufacturers to collect data and evaluate the ability of these manufacturers to provide hybrid – AM post-processing services in addition to their standard product offering (e.g. mass production).

Findings

The original equipment manufacturers (OEMs) surveyed have machine availability and an interest in adopting hybrid manufacturing to additionally offer post-processing services. Low volume parts which would be suitable for hybrid manufacturing are generally more profitable. Access to metal AM, process engineering time, tooling requirements and the need for quality control tools were equally identified as the major challenges for OEM participation in this evolving supply chain.

Practical implications

OEMs can use this research to determine if hybrid manufacturing is a possible fit for their industry using existing machine tools.

Originality/value

Survey data offer an unique insight into the readiness of metal manufacturers who play an integral role in the evolving hybrid supply chain ecosystem required for post-processing of AM metal parts. This study also suggests that establishing metal AM centers around OEMs as a shared resource to produce near-net AM parts would be beneficial.

Details

Rapid Prototyping Journal, vol. 23 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 February 2023

Mahyar Khorasani, Ian Gibson, Amir Hossein Ghasemi, Elahe Hadavi and Bernard Rolfe

The purpose of this study is, to compare laser-based additive manufacturing and subtractive methods. Laser-based manufacturing is a widely used, noncontact, advanced manufacturing

1090

Abstract

Purpose

The purpose of this study is, to compare laser-based additive manufacturing and subtractive methods. Laser-based manufacturing is a widely used, noncontact, advanced manufacturing technique, which can be applied to a very wide range of materials, with particular emphasis on metals. In this paper, the governing principles of both laser-based subtractive of metals (LB-SM) and laser-based powder bed fusion (LB-PBF) of metallic materials are discussed and evaluated in terms of performance and capabilities. Using the principles of both laser-based methods, some new potential hybrid additive manufacturing options are discussed.

Design methodology approach

Production characteristics, such as surface quality, dimensional accuracy, material range, mechanical properties and applications, are reviewed and discussed. The process parameters for both LB-PBF and LB-SM were identified, and different factors that caused defects in both processes are explored. Advantages, disadvantages and limitations are explained and analyzed to shed light on the process selection for both additive and subtractive processes.

Findings

The performance of subtractive and additive processes is highly related to the material properties, such as diffusivity, reflectivity, thermal conductivity as well as laser parameters. LB-PBF has more influential factors affecting the quality of produced parts and is a more complex process. Both LB-SM and LB-PBF are flexible manufacturing methods that can be applied to a wide range of materials; however, they both suffer from low energy efficiency and production rate. These may be useful when producing highly innovative parts detailed, hollow products, such as medical implants.

Originality value

This paper reviews the literature for both LB-PBF and LB-SM; nevertheless, the main contributions of this paper are twofold. To the best of the authors’ knowledge, this paper is one of the first to discuss the effect of the production process (both additive and subtractive) on the quality of the produced components. Also, some options for the hybrid capability of both LB-PBF and LB-SM are suggested to produce complex components with the desired macro- and microscale features.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 April 2024

Zhanghuang Xie, Xiaomei Li, Dian Huang, Andrea Appolloni and Kan Fang

We consider a joint optimization problem of product platform design and scheduling on unrelated additive/subtractive hybrid machines, and seek to find efficient solution…

Abstract

Purpose

We consider a joint optimization problem of product platform design and scheduling on unrelated additive/subtractive hybrid machines, and seek to find efficient solution approaches to solve such problem.

Design/methodology/approach

We propose a mathematical formulation for the problem of simultaneous product platform design and scheduling on unrelated additive/subtractive hybrid machines, and develop a simulated annealing-based hyper-heuristic algorithm with adjustable operator sequence length to solve the problem.

Findings

The simulated annealing-based hyper-heuristic algorithm with adjustable operator sequence length (SAHH-osla) that we proposed can be quite efficient in solving the problem of simultaneous product platform design and scheduling on unrelated additive/subtractive hybrid machines.

Originality/value

To the best of our knowledge, we are one of the first to consider both cost-related and time-related criteria for the problem of simultaneous product platform design and scheduling on unrelated additive/subtractive hybrid machines.

Details

Industrial Management & Data Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 7 September 2022

Abdul Wahab Hashmi, Harlal Singh Mali and Anoj Meena

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the…

Abstract

Purpose

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the products manufactured using AM usually suffer from defects like roughness or uneven surfaces. This paper discusses the various surface quality improvement techniques, including how to reduce surface defects, surface roughness and dimensional accuracy of AM parts.

Design/methodology/approach

There are many different types of popular AM methods. Unfortunately, these AM methods are susceptible to different kinds of surface defects in the product. As a result, pre- and postprocessing efforts and control of various AM process parameters are needed to improve the surface quality and reduce surface roughness.

Findings

In this paper, the various surface quality improvement methods are categorized based on the type of materials, working principles of AM and types of finishing processes. They have been divided into chemical, thermal, mechanical and hybrid-based categories.

Research limitations/implications

The review has evaluated the possibility of various surface finishing methods for enhancing the surface quality of AM parts. It has also discussed the research perspective of these methods for surface finishing of AM parts at micro- to nanolevel surface roughness and better dimensional accuracy.

Originality/value

This paper represents a comprehensive review of surface quality improvement methods for both metals and polymer-based AM parts.

Graphical abstract of surface quality improvement methods

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 August 2023

Usman Tariq, Ranjit Joy, Sung-Heng Wu, Muhammad Arif Mahmood, Asad Waqar Malik and Frank Liou

This study aims to discuss the state-of-the-art digital factory (DF) development combining digital twins (DTs), sensing devices, laser additive manufacturing (LAM) and subtractive…

Abstract

Purpose

This study aims to discuss the state-of-the-art digital factory (DF) development combining digital twins (DTs), sensing devices, laser additive manufacturing (LAM) and subtractive manufacturing (SM) processes. The current shortcomings and outlook of the DF also have been highlighted. A DF is a state-of-the-art manufacturing facility that uses innovative technologies, including automation, artificial intelligence (AI), the Internet of Things, additive manufacturing (AM), SM, hybrid manufacturing (HM), sensors for real-time feedback and control, and a DT, to streamline and improve manufacturing operations.

Design/methodology/approach

This study presents a novel perspective on DF development using laser-based AM, SM, sensors and DTs. Recent developments in laser-based AM, SM, sensors and DTs have been compiled. This study has been developed using systematic reviews and meta-analyses (PRISMA) guidelines, discussing literature on the DTs for laser-based AM, particularly laser powder bed fusion and direct energy deposition, in-situ monitoring and control equipment, SM and HM. The principal goal of this study is to highlight the aspects of DF and its development using existing techniques.

Findings

A comprehensive literature review finds a substantial lack of complete techniques that incorporate cyber-physical systems, advanced data analytics, AI, standardized interoperability, human–machine cooperation and scalable adaptability. The suggested DF effectively fills this void by integrating cyber-physical system components, including DT, AM, SM and sensors into the manufacturing process. Using sophisticated data analytics and AI algorithms, the DF facilitates real-time data analysis, predictive maintenance, quality control and optimal resource allocation. In addition, the suggested DF ensures interoperability between diverse devices and systems by emphasizing standardized communication protocols and interfaces. The modular and adaptable architecture of the DF enables scalability and adaptation, allowing for rapid reaction to market conditions.

Originality/value

Based on the need of DF, this review presents a comprehensive approach to DF development using DTs, sensing devices, LAM and SM processes and provides current progress in this domain.

Article
Publication date: 16 April 2018

J. Norberto Pires and Amin S. Azar

This paper aims to introduce the ideas of practical implications of using industrial robots to implement additive/hybrid manufacturing. The process is discussed and briefly…

2237

Abstract

Purpose

This paper aims to introduce the ideas of practical implications of using industrial robots to implement additive/hybrid manufacturing. The process is discussed and briefly demonstrated. This paper also introduces recent developments on human–machine interface for robotic manufacturing cells, namely the ones used for additive/hybrid manufacturing, as well as interoperability methods between the computer-aided design (CAD) data and material modeling systems. It is presented – using a few solutions developed by the authors – as a set of conceptual guidelines discussed throughout the paper and as a way to demonstrate how they can be applied and their practical implications.

Design/methodology/approach

The possibility to program the system from CAD information, which is argued to be crucial, is explored, and the methods necessary for connecting the CAD data to material modeling systems are introduced. This paper also discusses in detail the main requirements (also from a system point-of-view) needed for a full implementation of the presented ideas and methods. A few simulations to better characterize the interactions from heat conduction and physical metallurgy were conducted in an effort to better tune the additive manufacturing process. The results demonstrate how the toolpath planning and deposition strategies can be extracted and studied from a CAD model.

Findings

The paper fully demonstrates the possibility to use a robotic setup for additive manufacturing applications and shows the first steps of an innovative system designed with that objective.

Originality/value

Using the aimed platform, unsupervised net-shaping of complex components will substitute the cumbersome processes, and it is expected that such a visionary concept brings about a significant reduction in cost, energy consumption, lead time and production waste through the introduction of optimized and interactive processes. This can be considered as a breakthrough in the field of manufacturing and metal processing as the performance is indicated to increase significantly compared to the current instruction-dependent methods.

Details

Industrial Robot: An International Journal, vol. 45 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 13 April 2022

Qingyong Chen, Guilan Wang, Haiou Zhang and Runsheng Li

The purpose of this paper is to study the influence of different rolling deformation parameters on the morphology, microstructure and mechanical properties of Inconel 718…

Abstract

Purpose

The purpose of this paper is to study the influence of different rolling deformation parameters on the morphology, microstructure and mechanical properties of Inconel 718 superalloy in hybrid plasma arc and micro-rolling (HPAMR) additive manufacturing.

Design/methodology/approach

In this paper, different deformation strains are designed, which are as-deposited, 15% and 30%. Two straight walls are fabricated by HPAMR for each kind of deformation. One wall underwent post-deposition heat treatment, and the other wall is treated without heat treatment. These samples are further investigated to evaluate the effects of deformation on the morphology, microstructure and mechanical properties.

Findings

As compared to as-deposited samples, the morphology can be significantly improved, the generation of defects and microporosity inside the alloy can be suppressed, and finer equiaxed crystals can be obtained with deformation of 30%. With heat treatment and 30% deformation, the Laves phase at the grain boundary is completely disappearing, more γ” and γ' strengthening phase is precipitated in the crystal and the size of the strengthening phase is smaller. Mechanical properties have been significantly improved.

Practical implications

HPAMR technology is used to successfully manufacture Inconel 718 superalloy aero-engine casing.

Originality/value

Compared with plasma arc additive manufacturing, HPAMR technology adds a rolling process, which can effectively improve the morphology of walls, refine internal grains, eliminate defects and microporosity, increase precipitation of strengthening phase and improve mechanical properties. It provides an optional manufacturing method for the integrated manufacturing of Inconel 718 parts.

Details

Rapid Prototyping Journal, vol. 28 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 2000