Search results

1 – 10 of 119
Article
Publication date: 27 January 2022

Sundaram R.K., Senthil Kumaran S. and Edwin Samson P.

This study aims to reduce the interfacial tension by increasing the better adhesion between different immiscible polymers phases and also to evaluate the mechanical, thermal and…

Abstract

Purpose

This study aims to reduce the interfacial tension by increasing the better adhesion between different immiscible polymers phases and also to evaluate the mechanical, thermal and thermo-mechanical behavior of the immiscible polymer blends.

Design/methodology/approach

The polymer blend composite (PBC) was prepared using a twin-screw extruder followed by injection molding. Two different kinds of PBC with compatibilizer (Ethylene-n-Butylacrylate-Glycidyl methacrylate) of varying compositions like polybutylene terephthalate + poly trimethylene terephthalate and polybutylene terephthalate (30% glass filled) + poly trimethylene terephthalate were prepared and material behavior at various test conditions were studied. The effect of glass fiber reinforcement on polymer blend and the interlocking effect by the compatibilizer between the polymer phases were also assessed.

Findings

Mechanical behavior of PBC was estimated by tensile, flexural and angular impact tests. Likewise, the thermal deflection was studied with the help of heat deflection temperature test. Thermo-mechanical behavior likes storage modulus, loss modulus and loss tangent were studied using the dynamic mechanical analysis test. Morphological analysis was characterized using field emission scanning electron microscopy.

Originality/value

This in turn makes the process easy to obtain the PBC having inherent mechanical, thermal and thermo-mechanically stable. And, it also enhances the mechanical properties like tensile, flexural and impact strength. Simultaneously, posse’s excellent heat deflection and thermo-mechanical behavior over a temperature range of 35–140ºC at a constant frequency of 5 Hz.

Details

Pigment & Resin Technology, vol. 52 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4529

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 December 2022

Sobiya Manzoor, Syed Zameer Hussain, Tawheed Amin, Omar Bashir, Bazila Naseer, Abida Jabeen, Ufaq Fayaz, Naseh Nisar, Aarizoo Mushtaq, Monisa Yousouf, Zahida Naseem and Uzznain Khan

The purpose of this article was to highlight the various methods of extrusion technologies for encapsulation of bioactive components (BACs).

Abstract

Purpose

The purpose of this article was to highlight the various methods of extrusion technologies for encapsulation of bioactive components (BACs).

Design/methodology/approach

BACs provide numerous health-care benefits; however, downsides, including a strong effect of organoleptic properties by reason of the bitterness and acridity of a few components, and also a short shelf-life, limit their application in food. The food industry is still demanding complicated qualities from food ingredients, which were often impossible to obtain without encapsulation such as stability, delayed release, thermal protection and an acceptable sensory profile. Various techniques such as melt injection extrusion, hot-melt extrusion, electrostatic extrusion, co-extrusion and particles from gas-saturated solutions, could be used for maintaining these characteristics.

Findings

Extrusion technology has been well used for encapsulation of bioactive chemicals in an effort to avoid their numerous downsides and to boost their use in food. The count of BACs that could be encapsulated has risen owing to the extrusion technology just as form of encapsulation. Extrusion technique also aids in the devaluation of the fragment size of encapsulated BACs, allowing for greater application in the food business.

Originality/value

The study reported that encapsulating BACs makes them more stable in both the product itself and in the gastrointestinal tract, so using encapsulated BACs would result in a product with stronger preventive properties.

Details

Nutrition & Food Science , vol. 53 no. 6
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 2 October 2017

Jianhua Ren, Junjie Zhao and Xinyi Liu

With the twin screw extruder being widely used, there are a lot of parameters considered in the method, and the extruder’s volume is an important parameter of twin screw extruders

Abstract

Purpose

With the twin screw extruder being widely used, there are a lot of parameters considered in the method, and the extruder’s volume is an important parameter of twin screw extruders among them. In this paper, some of the extruder parameters such as the impacting extruder volume are introduced, and the mathematical relationship in these parameters is interpreted. The minimum power consumption is the goal of the authors’ structural design.

Design/methodology/approach

This paper further applies genetic algorithm, a kind of intelligent optimization methods, to obtain the most optimized design dimension, and power consumption function related to unit output of extruder is used as the optimizing target. Meanwhile, this paper takes channel depth of feeding section, channel depth of extrusion section affecting the energy consumption, the width of flight top and helix angle as design variables.

Findings

By using genetic algorithm, the optimal structure size is obtained, and the power consumption is minimum.

Originality/value

With the use of optimizing the structure, the power of consumption is reduced. This method has important economic significance and important social significance on energy saving.

Details

World Journal of Engineering, vol. 14 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 September 1979

David B. Todd

This work was undertaken to develop an additional and improved mode of control for twin‐screw compounding equipment, to increase the capability for the compounder to “fine tune”…

Abstract

This work was undertaken to develop an additional and improved mode of control for twin‐screw compounding equipment, to increase the capability for the compounder to “fine tune” his equipment to accommodate changes in feed rate and feed properties without having to alter screw configeration.

Details

Pigment & Resin Technology, vol. 8 no. 9
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 6 April 2021

Kapil Chawla, Rupinder Singh and Jaspreet Singh

The thermoplastic polymers do not decompose easily due to the presence of long-chain stable polymeric structure, and thus, causes serious effects on the environment. Recycling of…

Abstract

Purpose

The thermoplastic polymers do not decompose easily due to the presence of long-chain stable polymeric structure, and thus, causes serious effects on the environment. Recycling of these polymer wastes becomes the only solution to minimize their adverse effects on the environment. The purpose of this study was to explore the feasibility of using recycled thermoplastic material as filament for fused deposition modeling technique.

Design/methodology/approach

In this study, the researchers fabricated fused filaments (in-house) for fused deposition modeling (FDM) technique of additive manufacturing from secondary recycled acrylonitrile butadiene styrene (ABS) by using a twin-screw extruder. After measuring the melt flow index of the secondary recycled ABS, the twin-screw extrusion parameters (rpm/speed of the screw, extrusion temperature and load) were varied to predict their influence on the various properties (rheological/mechanical/thermal) of the fabricated filaments. Experimental work was executed as per Taguchi’s L9 orthogonal array.

Findings

Thermal analysis performed to estimate the heat carrying capacity of recycled ABS highlighted that the heat capacity of ABS increases significantly from 0.28 J/g to 3.94 J/g during the heating cycle. The maximum value of peak strength and percentage break elongation for the fused filaments was investigated at 12.5 kg load, 2,250 C extrusion temperature and 70 rpm speed.

Originality/value

The filaments fabricated by recycling the polymeric waste has been successfully used in the FDM machine for the preparation of the three-dimensional printed tensile specimen.

Details

World Journal of Engineering, vol. 19 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 November 2022

Mohd Nazri Ahmad, Mohamad Ridzwan Ishak, Mastura Mohammad Taha, Faizal Mustapha and Zulkiflle Leman

The purpose of this paper is to investigate the tensile strength, Young’s modulus, dimensional stability and porosity of acrylonitrile butadiene styrene (ABS)–oil palm fiber…

Abstract

Purpose

The purpose of this paper is to investigate the tensile strength, Young’s modulus, dimensional stability and porosity of acrylonitrile butadiene styrene (ABS)–oil palm fiber composite filament for fused deposition modeling (FDM).

Design/methodology/approach

A new feedstock material for FDM comprising oil palm fiber and ABS as a matrix was developed by a twin screw extruder. The composite filament contains 0, 3, 5 and 7 Wt.% of oil palm fiber in the ABS matrix. The tensile test is then performed on the fiber composite filament, and the wire diameter is measured. In this study, the Archimedes method was used to determine the density and the porosity of the filament. The outer surface of the wire composite was examined using an optical microscope, and the analysis of variance was used to assess the significance and the relative relevance of the primary factor.

Findings

The results showed that increasing the fiber loading from 0.15 to 0.4 MPa enhanced tensile strength by 60%. Then, from 16.1 to 18.3 MPa, the Young’s modulus rose by 22.8%. The density of extruded filament decreased and the percentage of porosity increased when the fiber loading was increased from 3 to 7 Wt.%. The diameter deviation of the extruded filaments varied from −0.21 to 0.04 mm.

Originality/value

This paper highlights a novel natural resource-based feedstock material for FDM. Its mechanical and physical properties were also discovered.

Article
Publication date: 16 November 2021

M. Balasubramanian, Thozhuvur Govindaraman Loganathan and R. Srimath

The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications.

Abstract

Purpose

The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications.

Design/methodology/approach

Fabrication methods and material characterization of various hybrid bio-composites are analyzed by studying the tensile, impact, flexural and hardness of the same. The natural fiber is a manufactured group of assembly of big or short bundles of fiber to produce one or more layers of flat sheets. The natural fiber-reinforced composite materials offer a wide range of properties that are suitable for many engineering-related fields like aerospace, automotive areas. The main characteristics of natural fiber composites are durability, low cost, low weight, high specific strength and equally good mechanical properties.

Findings

The tensile properties like tensile strength and tensile modulus of flax/hemp/sisal/Coir/Palmyra fiber-reinforced composites are majorly dependent on the chemical treatment and catalyst usage with fiber. The flexural properties of flax/hemp/sisal/coir/Palmyra are greatly dependent on fiber orientation and fiber length. Impact properties of flax/hemp/sisal/coir/Palmyra are depended on the fiber content, composition and orientation of various fibers.

Originality/value

This study is a review of various research work done on the natural fiber bio-composites exhibiting the factors to be considered for specific load conditions.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 October 2018

Rupinder Singh, Ranvijay Kumar and IPS Ahuja

This study aims to highlights the mechanical, thermal and melting behavior compatibility of aluminum (Al)-reinforced polyamide (PA) 6/acrylonitrile butadiene styrene (ABS)-based…

Abstract

Purpose

This study aims to highlights the mechanical, thermal and melting behavior compatibility of aluminum (Al)-reinforced polyamide (PA) 6/acrylonitrile butadiene styrene (ABS)-based functional prototypes prepared using fused deposition modeling (FDM) from the friction welding point of view. Previous studies have highlighted the use of metallic/non-metallic fillers in polymer matrix for preparations of mechanically improved FDM feedstock filaments and functional prototypes. But hitherto, very less has been reported on fabrication of functional prototypes which fulfill the compatibility of two polymers for joining/welding-based applications. The compatibility of two dissimilar polymers enables the friction welding for maintenance applications.

Design/methodology/approach

The twin screw extrusion process has been used for mechanical mixing of metallic reinforcement in polymer matrix, and final blend of reinforced polymers in the form of extruded feed stock filament has been used on FDM for printing of functional prototypes (for friction welding). The methodology involves melt flow index (MFI) investigations, differential scanning calorimetry (DSC) investigations for thermal properties, tensile and hardness testing for mechanical properties and photo micrographic investigations for metallurgical properties on extruded samples.

Findings

It was observed that the reinforced ABS and PA6 polymers have better compatibility in the terms of similar melt flow, thermal properties and can lead to the better joint efficiency with friction welding.

Originality/value

In the present work composite feed stock filament composed of ABS and PA6 with reinforcement of Al powder has been successfully developed for preparation of functional prototype in friction welding applications.

Details

Rapid Prototyping Journal, vol. 24 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 January 2006

R. Jeziórska

To convert the post‐production polyethylene terephthalate (PET)‐containing fabrics waste into new value‐added polymeric materials using maleic anhydride grafted linear low‐density…

6940

Abstract

Purpose

To convert the post‐production polyethylene terephthalate (PET)‐containing fabrics waste into new value‐added polymeric materials using maleic anhydride grafted linear low‐density polyethylene (LLDPE‐g‐MAH) for improved toughness and to optimise the results of such a modification.

Design/methodology/approach

For effective toughening, various blends were made of polyamide 6 (PA) and post‐production PET‐containing fabrics waste (PET) by incorporating different concentrations of maleic anhydride grafted, linear low‐density polyethylene (LLDPE‐g‐MAH). The reactions of LLDPE‐g‐MAH with blend components were studied by Fourier transformation infrared spectroscopy, solubility behaviour of the products in formic acid and rheological measurements. Blends investigated were prepared in a co‐rotating twin‐screw extruder and characterised by differential scanning calorimetry and scanning electron microscopy. The static tensile property and impact strength of the blends were also measured.

Findings

The modification of polyamide 6 and post‐production PET‐containing fabrics waste using LLDPE‐g‐MAH showed significant enhancement of impact and interfacial adhesion over the unmodified one. The modification caused a chemical linkage between LLDPE‐g‐MAH and blend components which led not only to forming PA‐co‐LLDPE‐g‐MAH‐co‐PET copolymers, but also to ensuring the intrinsically strong chemical bonds across LLDPE‐g‐MAH phase/PET phase/PA matrix interface, which was the main cause to the improved impact strength and interface adhesion. The optimum results were obtained at 10 per cent of LLDPE‐g‐MAH.

Research limitations/implications

The post‐production PET‐containing fabrics waste used in the present context was defibrated before processing.

Practical implications

The method developed provided a simple and practical solution to recycling and improving the toughness of post‐production PET‐containing fabrics waste.

Originality/value

The method of recycling post‐production PET‐containing fabrics waste was novel and the new polymeric materials obtained could find numerous applications such as hybrid films, fibres and engineering polymers.

Details

Pigment & Resin Technology, vol. 35 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 119