Search results

1 – 10 of 567
Article
Publication date: 14 January 2020

Frank Gardea, Daniel P. Cole, Bryan Glaz and Jaret C. Riddick

This study aims to discuss the effect of carbon nanotubes (CNTs) on the mechanical properties of acrylonitrilebutadienestyrene (ABS) composites fabricated by additive…

Abstract

Purpose

This study aims to discuss the effect of carbon nanotubes (CNTs) on the mechanical properties of acrylonitrilebutadienestyrene (ABS) composites fabricated by additive manufacturing (AM). Insight into the energy-dissipation mechanisms introduced and/or enhanced by the addition of CNTs is presented in this study.

Design/methodology/approach

ABS/CNT filaments were fabricated with different concentrations of CNTs. Using a fused deposition modeling approach, unidirectional specimens were printed using a MakerBot Replicator 2X (MakerBot Industries, Brooklyn, NY, USA). Specimens were tested under static and dynamic conditions, with the loading coinciding with the printing direction, to determine elastic modulus, strength and viscoelastic properties.

Findings

A CNT reinforcing effect is evident in a 37 per cent increase in elastic modulus. Likewise, the strength of the composite increases by up to 30 per cent with an increase in weight fraction of CNTs. At low dynamic strain amplitudes (0.05 per cent), a correlation between dissipated strain energy of the butadiene phase and strength of the composite is found such that less dissipation, from constraint of the butadiene particles by the CNTs, leads to higher strength of the composite. At higher dynamic strains, the presence of a high concentration of CNT leads to increased energy dissipation, with a maximum measured value of 24 per cent higher loss factor compared to baseline specimens. Because the trend of the composite behavior is similar (with a higher absolute value) to that of neat ABS, this study’s results indicate that well-established polymer/CNT dissipation mechanisms (such as stick-slip) are not significant, but that the CNTs amplify the dissipation of the ABS matrix by formation of crazes through stress concentrations.

Originality/value

This study provides knowledge of the dissipation behavior in additively manufactured ABS/CNT composites and provides insight into the expansion to new printable materials for dynamics applications.

Details

Rapid Prototyping Journal, vol. 26 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 October 2022

Thang Q. Tran, Xinying Deng, Carla Canturri, Chu Long Tham and Feng Lin Ng

This study aims to comprehensively investigate the process-structure-property correlation of acrylonitrile butadiene styrene (ABS) parts manufactured by the overheat material…

Abstract

Purpose

This study aims to comprehensively investigate the process-structure-property correlation of acrylonitrile butadiene styrene (ABS) parts manufactured by the overheat material extrusion (Mex) method. This study considers the relationships between the tensile and impact strength with temperature profiles, mesostructures and fracture behaviors of the ABS-printed parts.

Design/methodology/approach

The overheat printing condition was generated by using the highest possible printing temperature of the Mex printer used in this study together with cooling fan turned off. Temperature profiles of the polymer rasters were measured to characterize the diffusion time of the deposited rasters. Thermogravimetric analysis, differential scanning calorimetry and melt flow index were performed to study the thermal properties of the ABS feedstock. The mesostructures of the printed ABS samples were characterized by using an optical microscope, while their fracture surface was investigated using a field emission scanning electron microscope. The authors performed the tensile and impact tests following ASTM D3039 and D256-10A, respectively.

Findings

The use of the overheat Mex printing could offer better raster diffusion with reduced cooling rate and prolonged diffusion time. Consequently, the overheat printed ABS parts possessed a porosity as low as 1.35% with an increase in the weld length formed between the adjacent rasters of up to 62.5%. More importantly, the overheat printed ABS parts exhibited an increase of up to 70%, 84% and 30% in tensile strain at break, tensile toughness and impact strength, respectively, compared to their normal printed counterparts.

Originality/value

This study provides a facile but effective approach to fabricate highly dense and strong polymeric parts printed by Mex method for end-use applications.

Article
Publication date: 1 April 1992

Edgar S. Lower

An investigation has been carried out of the catalytic action of iron dipalmitate on the polymerisation of styrene, and of lauryl mercaptan and oleic acid, and polystyrene having…

Abstract

An investigation has been carried out of the catalytic action of iron dipalmitate on the polymerisation of styrene, and of lauryl mercaptan and oleic acid, and polystyrene having good particle size distribution has been obtained by the polymerisation of styrene in the presence of stearic acid, which can also act as a catalyst in the bulk polymerisation of this monomer, optionally used along with styrene oxide. The fatty acid has also been employed along with diphenylamine and hydroxyacetophenone, to give catalysts systems for the polymerisation of styrene monomer, the acid ensuring brilliance in the moulded polymer. Stearoyl peroxide functions as a catalyst in the bulk polymerisation of styrene, whilst zinc stearate can work as a catalyst to the thermal degradation of polystyrene.

Details

Pigment & Resin Technology, vol. 21 no. 4
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 20 April 2015

Sophia Ziemian, Maryvivian Okwara and Constance Wilkens Ziemian

This paper aims to define the effect of specimen mesostructure on the monotonic tensile behavior and tensile-fatigue life of layered acrylonitrile butadiene styrene (ABS…

2557

Abstract

Purpose

This paper aims to define the effect of specimen mesostructure on the monotonic tensile behavior and tensile-fatigue life of layered acrylonitrile butadiene styrene (ABS) components fabricated by fused deposition modeling (FDM).

Design/methodology/approach

Tensile tests were performed on FDM dogbone specimens with four different raster orientations according to ASTM standard D638-03. Resulting ultimate tensile stresses (UTS) for each raster orientation were used to compute the maximum stress for fatigue testing, i.e. 90, 75, 60 and 50 or 45 per cent nominal values of the UTS. Multiple specimens were subjected to tension – tension fatigue cycling with stress ratio of R = 0.10 in accordance with ASTM standard D7791-12.

Findings

Both tensile strength and fatigue performance exhibited anisotropic behavior. The longitudinal (0°) and default (+45/−45°) raster orientations performed significantly better than the diagonal (45°) or transverse (90°) orientations in regards to fatigue life, as displayed in the resulting Wohler curves.

Practical implications

Raster orientation has a significant effect on the fatigue performance of FDM ABS components. Aligning FDM fibers along the axis of the applied stress provides improved fatigue life. If the direction of applied stresses is not expected to be constant in given application, the default raster orientation is recommended.

Originality/value

This project provides knowledge to the limited work published on the fatigue performance of FDM ABS components. It provides S-N fatigue life results that can serve as a foundation for future work, combining experimental investigations with theoretical principles and the statistical analysis of data.

Details

Rapid Prototyping Journal, vol. 21 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 October 2023

Roberto Junior Algarín Roncallo, Luis Lisandro Lopez Taborda and Diego Guillen

The purpose of this research is present an experimental and numerical study of the mechanical properties of the acrylonitrile butadiene styrene (ABS) in the additive manufacturing…

Abstract

Purpose

The purpose of this research is present an experimental and numerical study of the mechanical properties of the acrylonitrile butadiene styrene (ABS) in the additive manufacturing (AM) by fused filament fabrication (FFF). The characterization and mechanical models obtained are used to predict the elastic behavior of a prosthetic foot and the failure of a prosthetic knee manufactured with FFF.

Design/methodology/approach

Tension tests were carried out and the elastic modulus, yield stress and tensile strength were evaluated for different material directions. The material elastic constants were determined and the influence of infill density in the mechanical strength was evaluated. Yield surfaces and failure criteria were generated from the tests. Failures over prosthetic elements in tridimensional stresses were analyzed; the cases were evaluated via finite element method.

Findings

The experimental results show that the material is transversely isotropic. The elasticity modulus, yield stress and ultimate tensile strength vary linearly with the infill density. The stresses and the failure criteria were computed and compared with the experimental tests with good agreement.

Practical implications

This research can be applied to predict failures and improve reliability in FFF or fused deposition modeling (FDM) products for applications in high-performance industries such as aerospace, automotive and medical.

Social implications

This research aims to promote its widespread adoption in the industrial and medical sectors by increasing reliability in products manufactured with AM based on the failure criterion.

Originality/value

Most of the models studied apply to plane stress situations and standardized specimens of printed material. However, the models applied in this study can be used for functional parts and three-dimensional stress, with accuracy in the range of that obtained by other researchers. The researchers also proposed a method for the mechanical study of fragile materials fabricated by processes of FFF and FDM.

Article
Publication date: 12 March 2018

Joseph Bartolai, Timothy W. Simpson and Renxuan Xie

The weakest point in additively manufactured polymer parts produced by material extrusion additive manufacturing (MEAM) is the interface between adjacent layers and deposition…

Abstract

Purpose

The weakest point in additively manufactured polymer parts produced by material extrusion additive manufacturing (MEAM) is the interface between adjacent layers and deposition toolpaths or “roads”. This study aims to predict the mechanical strength of parts by utilizing a novel analytical approach. Strength predictions are made using the temperature history of these interfaces, polymer rheological data, and polymer weld theory.

Design/methodology/approach

The approach is validated using experimental data for two common 3D-printed polymers: polycarbonate (PC) and acrylonitrile butadiene styrene (ABS). Interface temperature history data are collected in situ using infrared imaging. Rheological data of the polycarbonate and acrylonitrile butadiene styrene used to fabricate the fused filament fabrication parts in this study have been determined experimentally.

Findings

The strength of the interfaces has been predicted, to within 10% of experimental strength, using polymer weld theory from the literature adapted to the specific properties of the polycarbonate and acrylonitrile butadiene styrene feedstock used in this study.

Originality/value

This paper introduces a novel approach for predicting the strength of parts produced by MEAM based on the strength of interfaces using polymer weld theory, polymer rheology, temperature history of the interface and the forces applied to the interface. Unlike methods that require experimental strength data as a prediction input, the proposed approach is material and build orientation agnostic once fundamental parameters related to material composition have been determined.

Details

Rapid Prototyping Journal, vol. 24 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 December 2020

Pierandrea Dal Fabbro, Andrea La Gala, Willem Van De Steene, Dagmar R. D’hooge, Giovanni Lucchetta, Ludwig Cardon and Rudinei Fiorio

This study aims to evaluate and compare the macroscopic properties of commercial acrylonitrile-butadiene-styrene (ABS) processed by two different types of additive manufacturing…

Abstract

Purpose

This study aims to evaluate and compare the macroscopic properties of commercial acrylonitrile-butadiene-styrene (ABS) processed by two different types of additive manufacturing (AM) machines. The focus is also on the effect of multiple closed-loop recycling of ABS.

Design/methodology/approach

A conventional direct-drive, Cartesian-type machine and a Bowden, Delta-type machine with an infrared radiant heating system are used to manufacture test specimens molded in ABS. Afterward, multiple closed-loop recycling cycles are conducted, involving consecutive AM (four times) and recycling (three times). The rheological, mechanical, morphological and physicochemical properties are investigated.

Findings

The type of machine affects the quality of the produced parts. The machine containing an infrared radiant system in a temperature-controlled chamber produces parts showing higher mechanical properties and filling fraction, although it increases the yellowing. Closed-loop recycling of ABS for AM is applicable for at least two cycles, inducing a slight increase in tensile modulus (ca. 5%) and in tensile strength (ca. 13%) and a decrease in the impact strength (ca. 14%) and melt viscosity. An increase in the filling fraction of the AM parts promotes an increase in tensile strength and tensile modulus, although it does not influence the impact strength. Furthermore, multiple closed-loop recycling does not affect the overall chemical structure of ABS.

Practical implications

Controlling the environmental temperature and using infrared radiant heating during AM of ABS improves the quality of the produced parts. Closed-loop recycling of ABS used in AM is feasible up to at least two recycling steps, supporting the implementation of a circular economy for polymer-based AM.

Originality/value

This study shows original results regarding the assessment of the effect of different types of AM machines on the main end-use properties of ABS parts and the influence of multiple closed-loop recycling on the characteristics of ABS fabricated by the most suited AM machine with an infrared radiant heating system and a temperature-controlled environment.

Article
Publication date: 23 October 2020

Wilco M.H. Verbeeten, Miriam Lorenzo-Bañuelos, Rubén Saiz-Ortiz and Rodrigo González

The purpose of the present paper is to quantify and analyze the strain-rate dependence of the yield stress for both unfilled acrylonitrile-butadiene-styrene (ABS) and short carbon…

283

Abstract

Purpose

The purpose of the present paper is to quantify and analyze the strain-rate dependence of the yield stress for both unfilled acrylonitrile-butadiene-styrene (ABS) and short carbon fiber-reinforced ABS (CF-ABS) materials, fabricated via material extrusion additive manufacturing (ME-AM). Two distinct and opposite infill orientation angles were used to attain anisotropy effects.

Design/methodology/approach

Tensile test samples were printed with two different infill orientation angles. Uniaxial tensile tests were performed at five different constant linear strain rates. Apparent densities were measured to compensate for the voided structure. Scanning electron microscope fractography images were analyzed. An Eyring-type flow rule was evaluated for predicting the strain-rate-dependent yield stress.

Findings

Anisotropy was detected not only for the yield stresses but also for its strain-rate dependence. The short carbon fiber-filled material exhibited higher anisotropy than neat ABS material using the same ME-AM processing parameters. It seems that fiber and molecular orientation influence the strain-rate dependence. The Eyring-type flow rule can adequately describe the yield kinetics of ME-AM components, showing thermorheologically simple behavior.

Originality/value

A polymer’s viscoelastic behavior is paramount to be able to predict a component’s ultimate failure behavior. The results in this manuscript are important initial findings that can help to further develop predictive numerical tools for ME-AM technology. This is especially relevant because of the inherent anisotropy that ME-AM polymer components show. Furthermore, short carbon fiber-filled ABS enhanced anisotropy effects during ME-AM, which have not been measured previously.

Article
Publication date: 25 June 2020

Mohamad Nordin Mohamad Norani, Mohd Fadzli Bin Abdollah, Muhammad Ilman Hakimi Chua Abdullah, Hilmi Amiruddin, Faiz Redza Ramli and Noreffendy Tamaldin

This study aims is to investigate the correlation between tribological and mechanical properties of the fused filament fabrication 3D-printed acrylonitrile butadiene styrene (ABS…

Abstract

Purpose

This study aims is to investigate the correlation between tribological and mechanical properties of the fused filament fabrication 3D-printed acrylonitrile butadiene styrene (ABS) pin with different internal geometries.

Design/methodology/approach

The tribological properties were determined by a dry sliding test with constant test parameters, while the hardness and modulus of elasticity were determined by microhardness and compression tests.

Findings

Although the internal geometry of the pin sample slightly affects the coefficient of friction (COF) and the wear rate of the 3D-printed ABS, it was important to design a lightweight tribo-component by reducing the material used to save energy without compromising the strength of the component. The COF and wear rate values are relatively dependent on the elastic modulus. A 3D-printed ABS pin with an internal triangular flip structure was found to have the shortest run-in period and the lowest COF with high wear resistance. Abrasive wear and delamination are the predominant wear mechanisms involved.

Research limitations/implications

The findings are the subject of future research under various sliding conditions by investigating the synergistic effect of sliding speeds and applied loads to validate the results of this study.

Originality/value

The internal structure affects the mechanical properties and release stress concentration at the contact point, resulting in hypothetically low friction and wear. This approach may also reduce the weight of the parts without scarifying or at least preserving their preceding tribological performance. Therefore, based on our knowledge, limited studies have been conducted for the application of 3D printing in tribology, and most studies focused on improving their mechanical properties rather than correlating them with tribological properties that would benefit longer product lifespans.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2020-0143/

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 June 2021

Debashis Mishra and Anil Kumar Das

The purpose of the experimental investigation was to optimize the process parameters of the fused deposition modeling (FDM) technique. The optimization of the process was…

Abstract

Purpose

The purpose of the experimental investigation was to optimize the process parameters of the fused deposition modeling (FDM) technique. The optimization of the process was performed to identify the relationship between the chosen factors and the tensile strength of acrylonitrile butadiene styrene (ABS) and carbon fiber polylactic acid (PLA) thermoplastic material, FDM printed specimens. The relationship was demonstrated by using the linear experimental model analysis, and a prediction expression was established. The developed prediction expression can be used for the prediction of tensile strength of selected thermoplastic materials at a 95% confidence level.

Design/methodology/approach

The Taguchi L9 experimental methodology was used to plan the total number of experiments to be performed. The process parameters were chosen as three at three working levels. The working range of chosen factors was the printing speed (60, 80 and 100mm/min), 40%, 60% and 80% as the infill density and 0.1mm, 0.2mm and 0.3mm as the layer thickness. The fused deposition modeling process parameters were optimized to get the maximum tensile strength in FDM printed ABS and carbon fiber PLA thermoplastic material specimens.

Findings

The optimum condition was achieved by the process optimization, and the desired results were obtained. The maximum desirability was achieved as 0.98 (98%) for the factors, printing speed 100mm/min, infill density 60mm and layer thickness 0.3mm. The strength of the ABS specimen was predicted to be 23.83MPa. The observed strength value was 23.66MPa. The maximum desirability was obtained as 1 (100%) for the factors, printing speed 100mm/min, infill density 60mm and layer thickness 0.2mm. The strength of the carbon fiber PLA specimen was predicted to be 26.23MPa, and the obtained value was 26.49MPa.

Research limitations/implications

The research shows the useful process parameters and their suitable working conditions to print the tensile specimens of the ABS and carbon fiber PLA thermoplastics by using the fused deposition modeling technique. The process was optimized to identify the most influential factor, and the desired optimum condition was achieved at which the maximum tensile strength was reported. The produced prediction expression can be used to predict the tensile strength of ABS and carbon fiber PLA filaments.

Practical implications

The results obtained from the experimental investigation are useful to get an insight into the FDM process and working limits to print the parts by using the ABS and carbon fiber PLA material for various industrial and structural applications.

Social implications

The results will be useful in choosing the suitable thermoplastic filament for the various prototyping and structural applications. The products that require freedom in design and are difficult to produce by most of the conventional techniques can be produced at low cost and in less time by the fused deposition modeling technique.

Originality/value

The process optimization shows the practical exposures to state an optimum working condition to print the ABS and carbon fiber PLA tensile specimens by using the FDM technique. The carbon fiber PLA shows better strength than ABS thermoplastic material.

1 – 10 of 567