Search results

1 – 10 of 38
Article
Publication date: 1 December 2005

R.I. Amaro, R.C. Martins, J.O. Seabra, S. Yang, D.G. Teer and N.M. Renevier

Provide tribological information about the applicability of multi‐layer carbon‐chromium composite coatings to gears. Discuss the protection provided against scuffing failures…

1258

Abstract

Purpose

Provide tribological information about the applicability of multi‐layer carbon‐chromium composite coatings to gears. Discuss the protection provided against scuffing failures, wear and the influence on gear power losses.

Design/methodology/approach

Several screening tests, such as Rockwell indentations, ball cratering, pin‐on‐disc and reciprocating wear tests, were performed in order to evaluate the adhesion to the substrate and the tribological performance of the carbon/chromium composite coating. Afterwards, twin‐disc tests were performed at high contact pressure and high slide‐to‐roll ratios to confirm the good adhesive and tribological properties of the coating under operating conditions similar to those found in gears. Gear tests were performed in the FZG machine in order to evaluate the anti‐scuffing performance of the carbon/chromium coating using additive free gear oils. Finally, the carbon/chromium composite coating was also applied to the gearing in a gearbox and its influence on the gearbox efficiency was analysed.

Findings

The C/Cr has got very good adhesion to the steel substrate, provides low friction coefficients between contacting solids in relative movement, gives excellent protection against scuffing and wear reduction in gears, and promotes a slight improvement of the gears efficiency.

Research limitations/implications

The protection of this carbon/chromium coating against gear micro‐pitting should be investigated.

Practical implications

This study confirms the applicability of this coating to industrial gear applications, especially in two particular applications: severe applications involving high contact pressures and high sliding, frequent start‐ups and inefficient lubrication; and acting as tribo‐reactive material and substituting non‐biodegradable and toxic additives in environmental lubricants.

Originality/value

This work validates and quantifies the influence of this C/Cr multi‐layer composite coating in gear applications in terms of adhesion to the substrate, anti‐scuffing performance and efficiency.

Details

Industrial Lubrication and Tribology, vol. 57 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 December 2018

Martin Zimmer and Dirk Bartel

The purpose of this paper is to determine parameters for an efficient running-in of gears and an improved method for the prediction of the tooth flank load carrying capacity.

Abstract

Purpose

The purpose of this paper is to determine parameters for an efficient running-in of gears and an improved method for the prediction of the tooth flank load carrying capacity.

Design/methodology/approach

In this contribution, a model for the calculation of the pitting life of involute spur gears is introduced, which is based on an extension of the life model according to Ioannides and Harris for rough surfaces. To achieve the most realistic thermal elastohydrodynamic lubrication simulation and stress calculation possible, measured real surfaces and elastic-plastic material properties of the area close to the surface are used. Special attention is paid to the compatibility of the fatigue life calculation for heterogeneous rough surfaces and their consistent consideration in the lifespan calculation.

Findings

A non-destructive running-in for twin-disc pairings can be performed using suitable operating parameters, which subsequently can be transferred to tooth flank tests. Using the extended life model according to Ioannides and Harris, an enhanced prediction of the tooth flank load carrying capacity is possible.

Originality/value

The developed extended life model includes a new numerical approach for calculating the tooth flank load carrying capacity. It has the potential to reliably support and hence to accelerate the design process of gears.

Details

Industrial Lubrication and Tribology, vol. 71 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 March 2024

Mauricio Pérez Giraldo, Mauricio Vasquez, Alejandro Toro, Robison Buitrago-Sierra and Juan Felipe Santa

This paper aims to develop a stable gel-type lubricant emulating commercial conditions. This encompassed rheological and tribological assessments, alongside field trials on the…

20

Abstract

Purpose

This paper aims to develop a stable gel-type lubricant emulating commercial conditions. This encompassed rheological and tribological assessments, alongside field trials on the Medellín tram system.

Design/methodology/approach

The gel-type lubricant with graphite and aluminum powder is synthesized. Rheological tests, viscosity measurements and linear viscoelastic regime assessments are conducted. Subsequently, tribological analyses encompassing four-ball and twin disc methods are executed. Finally, real-world testing is performed on the Medellín tram system.

Findings

An achieved lubricant met the stipulated criteria, yielding innovative insights into the interaction of graphite and aluminum powder additives under varying tests.

Originality/value

Novel findings are unveiled regarding the interaction of graphite and aluminum powder additives in tribological, rheological and real-world trials. In addition, the wear behavior of polymers is observed, along with the potential utilization of such additives in tramway systems.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 August 2008

Babatunde Lawal Abdulquadir and Michael Bolaji Adeyemi

The purpose of this paper is to assess lubricating performances of selected locally produced vegetable oil‐based lubricants with a view to utilizing them as a possible alternative…

748

Abstract

Purpose

The purpose of this paper is to assess lubricating performances of selected locally produced vegetable oil‐based lubricants with a view to utilizing them as a possible alternative to petroleum‐based lubricants in metal‐forming processes.

Design/methodology/approach

The ring compression testing and twin disks upsetting testing methods were employed.

Findings

The results obtained from these two tests showed that the red palm oil performed better than others at room temperature, followed by sheabutter oil, while palm kernel oil performed the least. High‐temperatures compression ring tests gave sheabutter oil lower values of friction coefficients than red palm oil.

Research limitations/implications

Further work should be done on numerous vegetable oil‐based lubricants. Also those that show promising performance could be further investigated with locally available additives.

Practical implications

These are numerous since increase in environmental interest has resulted in a renewed interest in vegetable oil‐based lubricants.

Originality/value

The research work has broken new ground in finding applications for environmentally friendly lubricants in various areas of metal‐forming processes.

Details

Industrial Lubrication and Tribology, vol. 60 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 January 2021

Andreas Schwarz, Martin Ebner, Thomas Lohner, Karsten Stahl, Kirsten Bobzin, Tobias Brögelmann, Christian Kalscheuer and Matthias Thiex

This paper aims to address the influence of diamond-like carbon (DLC) coatings on the frictional power loss of spur gears. It shows potentials for friction and bulk temperature…

Abstract

Purpose

This paper aims to address the influence of diamond-like carbon (DLC) coatings on the frictional power loss of spur gears. It shows potentials for friction and bulk temperature reduction in industrial use. From a scientific point of view, the thermal insulation effect on fluid friction is addressed, which lowers viscosity in the gear contact due to increasing contact temperature.

Design/methodology/approach

Thermal insulation effect is analyzed in detail by means of the heat balance and micro thermal network of thermal elastohydrodynamic lubrication contacts. Preliminary results at a twin-disk test rig are summarized to categorize friction and bulk temperature reduction by DLC coatings. Based on experiments at a gear efficiency test rig, the frictional power losses and bulk temperatures of DLC-coated gears are investigated, whereby load, speed, oil temperature and coatings are varied.

Findings

Experimental investigations at the gear efficiency test rig showed friction and bulk temperature reduction for all operating conditions of DLC-coated gears compared to uncoated gears. This effect was most pronounced for high load and high speed. A reduction of the mean gear coefficient of friction on average 25% and maximum 55% was found. A maximum reduction of bulk temperature of 15% was observed.

Practical implications

DLC-coated gears show a high potential for reducing friction and improving load-carrying capacity. However, the industrial implementation is restrained by the limited durability of coatings on gear flanks. Therefore, a further and overall consideration of key durability factors such as substrate material, pretreatment, coating parameters and gear geometry is necessary.

Originality/value

Thermal insulation effect of DLC coatings was shown by theoretical analyses and experimental investigations at model test rigs. Although trial tests on gears were conducted in literature, this study proves the friction reduction by DLC-coated gears for the first time systematically in terms of various operating conditions and coatings.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0257/

Details

Industrial Lubrication and Tribology, vol. 73 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 July 2019

Andreas Ziegltrum, Stefan Emrich, Thomas Lohner, Klaus Michaelis, Alexander Brodyanski, Rolf Merz, Michael Kopnarski, Bernd-Robert Hoehn and Karsten Stahl

This paper aims to address the influence of tribofilms and running-in on failures and friction of gears. The operation regime of gears is increasingly shifted to mixed and…

Abstract

Purpose

This paper aims to address the influence of tribofilms and running-in on failures and friction of gears. The operation regime of gears is increasingly shifted to mixed and boundary lubrication, where high local pressures and temperatures occur at solid interactions in the gear contact. This results in strong tribofilm formation due to interactions of lubricant and its additives with the gear flanks and is related to changes of surface topography especially pronounced during running-in.

Design/methodology/approach

Experiments at a twin-disk and gear test rig were combined with chemical, structural and mechanical tribofilm characterization by surface analysis. Pitting lifetime, scuffing load carrying capacity and friction of ground spur gears were investigated for a mineral oil with different additives.

Findings

Experimental investigations showed a superordinate influence of tribofilms over surface roughness changes on damage and friction behavior of gears. Surface analysis of tribofilms provides explanatory approaches for friction behavior and load carrying capacity. A recommendation for the running-in of spur gears was derived.

Originality/value

Experimental methods and modern surface analysis were combined to study the influence of running-in and tribofilms on different failures and friction of spur gears.

Details

Industrial Lubrication and Tribology, vol. 71 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 May 2018

Milan Omasta, Martin Ebner, Petr Šperka, Thomas Lohner, Ivan Krupka, Martin Hartl, Bernd-Robert Hoehn and Karsten Stahl

The purpose of this study is to investigate lubricant film-forming capability of oil-impregnated sintered material in highly loaded non-conformal contacts. This self-lubrication…

Abstract

Purpose

The purpose of this study is to investigate lubricant film-forming capability of oil-impregnated sintered material in highly loaded non-conformal contacts. This self-lubrication mechanism is well described in lightly loaded conformal contacts such as journal bearings; however, only a little has been published about the application to highly loaded contacts under elastohydrodynamic lubrication regime (EHL).

Design/methodology/approach

Thin film colorimetric interferometry is used to describe the effect of different operating conditions on lubricant film formation in line contacts.

Findings

Under fully flooded conditions, the effect of porous structure can be mainly traced back to the different elastic properties. When the contact is lubricated only by oil bleeding from the oil-impregnated sintered material, starvation is likely to occur. It is indicated that lubricant film thickness is mainly governed by oil bleeding capacity. The relationship between oil starvation parameters corresponds well with classic starved EHL theory.

Practical implications

To show practical, relevant limitations of the considered self-lubrication system, time tests were conducted. The findings indicate that EHL contact with oil-impregnated sintered material may provide about 40 per cent of fully flooded film thickness.

Originality/value

For the first time, the paper presents results on the EHL film-forming capability of oil-impregnated sintered material by measuring the lubricant film thickness directly. The present paper identifies the phenomena involved, which is necessary for the understanding of the behavior of this complex tribological system.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 November 2018

Xiaogang Zhang and Yali Zhang

This study aims to investigate the sliding friction behaviour and mechanism of engineering surfaces.

Abstract

Purpose

This study aims to investigate the sliding friction behaviour and mechanism of engineering surfaces.

Design/methodology/approach

A new numerical approach is proposed. This approach derives the macroscale friction coefficient from microscale asperity interactions. By applying this approach, the sliding friction behaviour under different operating conditions were investigated in terms of molecular and mechanical components.

Findings

Numerical results demonstrate an independent relationship between normal load and friction coefficient, which is governed by the saturated plastic ratio. Numerical results also demonstrate that under very small load, an increase in load increases the friction coefficient. In addition, numerical results confirm the existence of optimal surface roughness where the friction coefficient is the lowest. For the surface profiles used in the current calculation, an optimal surface roughness value is obtained as Rq = 0.125 μm.

Originality/value

This new approach characterizes the deterministic relationship between macroscale friction coefficient and microscale asperity molecular/mechanical interactions. Numerical results facilitate the understanding of sliding friction mechanism.

Details

Industrial Lubrication and Tribology, vol. 71 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 2022

Xiaopeng Wang, Kun Peng, Meiyun Zhao, Hongliang Tian and Hongling Qin

The purpose of this paper is to propose a wheel/rail mixed lubrication model to study the water lubrication behavior of wheel/rail contact interface.

Abstract

Purpose

The purpose of this paper is to propose a wheel/rail mixed lubrication model to study the water lubrication behavior of wheel/rail contact interface.

Design/methodology/approach

The numerical simulation method is applied in this paper. A deterministic mixed lubrication model considering surface roughness and transient state is established. The quasi-system numerical and finite difference method are used for numerical solution. The model is verified by comparing with the experimental data in the literature under the same conditions.

Findings

Under wet conditions, the change of train speed will change the lubrication state of the wheel/rail contact interface. With an increasing speed, the average film thickness and the film thickness ratio increase, while the adhesion coefficient, the contact load ratio and the contact area ratio decrease. When the creep ratio increases from 0% to 0.5%, the wheel/rail adhesion coefficient and subsurface stress increase sharply. With the increase of axle load, the average film thickness decreases and the adhesion coefficient increases.

Practical implications

This paper aims to improve the mixed lubrication theory by analyzing the characteristics of wheel/rail friction and lubrication, so as to provide some guidance and theory for train driving behavior.

Originality/value

Using the deterministic model, the lubrication state of the wheel/rail contact interface affected by various external factors and the adhesion behavior of wheel/rail progressive process from boundary lubrication to mixed lubrication are studied.

Details

Industrial Lubrication and Tribology, vol. 74 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 May 2021

Kirsten Bobzin, Tobias Brögelmann, Christian Kalscheuer, Matthias Thiex, Andreas Schwarz, Martin Ebner, Thomas Lohner and Karsten Stahl

This paper aims to address the coating and compound analysis of diamond-like carbon (DLC) on steel, to understand the frictional behavior in tribological gear systems presented in…

Abstract

Purpose

This paper aims to address the coating and compound analysis of diamond-like carbon (DLC) on steel, to understand the frictional behavior in tribological gear systems presented in paper Part I. Here, the Ti and Zr modified DLC coating architectures are analyzed regarding their chemical, mechanical and thermophysical properties. The results represent a systematic analysis of the thermal insulating effect in tribological contact of DLC coated gears.

Design/methodology/approach

The approach was to evaluate the effect of the substitution of Zr through Ti at the reference coating ZrCg to TiCg and the effect on thermophysical properties. Furthermore, the influence of different carbon and hydrogen contents on the coating and compound properties was analyzed. Therefore, different discrete Ti or Zr containing DLC coatings were deposited on an industrial coating machine. Thereby the understanding of the microstructure and chemical composition of the reference coatings is increased.

Findings

Results prove comparable mechanical properties of metal modified DLC independent of differences in chemical compositions. Moreover, the compound adhesion between TiCg/16MnCr5E was improved compared to ZrCg/16MnCr5E. The effect of hydrogen content Ψ and carbon content xc on the thermophysical properties is limited by Ψ = 18 at.% and xc = 90 at.%.

Practical implications

The findings of the combined papers Part I and II show a high potential for industrial application of DLC on gears. Based on the results DLC coatings and gears can be tailored to each other.

Originality/value

Systematic analysis of DLC coatings were conducted to evaluate the effect of titanium, carbon and hydrogen on thermophysical properties.

Details

Industrial Lubrication and Tribology, vol. 73 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 38