Search results

1 – 10 of over 6000
Article
Publication date: 1 March 2006

Y. Zhang

Seeks to study the dependence of the shear strength of a fluid on the fluid pressure and the bulk fluid temperature, respectively, theoretically for given bulk fluid temperatures

Abstract

Purpose

Seeks to study the dependence of the shear strength of a fluid on the fluid pressure and the bulk fluid temperature, respectively, theoretically for given bulk fluid temperatures and fluid pressures in the whole ranges of fluid pressure and bulk fluid temperature.

Design/methodology/approach

The analyses are, respectively, carried out with emphasis on the dependence of the shear strength of a fluid in liquid state, i.e. at low pressures on the fluid pressure and the bulk fluid temperature for given bulk fluid temperatures and fluid pressures based on the theory of the compression of the fluid by the pressurization of the fluid.

Findings

The fluid shear strength versus fluid pressure curve in the whole range of fluid pressure and the fluid shear strength versus bulk fluid temperature curve in the whole range of bulk fluid temperature, respectively, for a given bulk fluid temperature and a given fluid pressure are obtained. It is shown by this fluid shear strength versus fluid pressure curve that, for a given bulk fluid temperature, when the fluid is in liquid state, i.e. at low pressures, the value of the shear strength of the fluid is insensitive to the variation of the pressure of the fluid and is low: when the fluid is in solidification state, i.e. at medium and high but not extremely high pressures, the value of the shear strength of the fluid is the most sensitive to the variation of the pressure of the fluid and is very approximately linearly increased with the increase of the pressure of the fluid; when the fluid is in high solidification state, i.e. at extremely high pressures, the value of the shear strength of the fluid is insensitive to the variation of the pressure of the fluid and is the highest, i.e. approaches the value of the shear strength of the fluid in solid state.

Originality/value

Extends one's knowledge of the shear strength of a fluid in the while ranges of pressure and temperature.

Details

Industrial Lubrication and Tribology, vol. 58 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 February 2011

Bernd‐Robert Höhn, Klaus Michaelis and Hans‐Philipp Otto

The purpose of this paper is to make an attempt to evaluate the pitting load carrying capacity under increased thermal conditions. This is the basis for an estimated lifetime…

Abstract

Purpose

The purpose of this paper is to make an attempt to evaluate the pitting load carrying capacity under increased thermal conditions. This is the basis for an estimated lifetime which is one of the most important parameters defining transmission reliability.

Design/methodology/approach

Recommendations related to pitting load carrying capacity calculation of case hardened gears running at high gear bulk temperatures are formulated. These factors are based on extensive experimental data, obtained in pitting tests with high oil injection temperatures, high oil sump temperatures or high operational gear bulk temperatures due to a lack of heat dissipation caused by minimised lubrication.

Findings

Testing of gear type C‐PT on FZG back‐to‐back test rig at high gear bulk temperatures by either heating up the lubricant or caused by a lack of heat dissipation as it appears with poor lubrication conditions resulted in a decrease of up to 30 per cent of the endurance strength in various investigations. This results in a reduction of the material strength due to tempering effects and high surface shear stress due to low oil film thicknesses caused by low operating oil viscosities.

Originality/value

The present calculation method in the standard DIN/ISO is not valid for high gear bulk temperatures. Nevertheless, the present calculation algorithms of the standards DIN/ISO are valid for low and moderate thermal operating conditions when using oil temperatures of up to 80 (90)°C in the case of a sufficient cooling oil supply to the gear mesh. With the presented modifications higher gear bulk temperatures (>120°C) can be taken into account.

Details

Industrial Lubrication and Tribology, vol. 63 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 March 2022

Muhammad Arif Mahmood, Andrei C. Popescu, Mihai Oane, Carmen Ristoscu and Ion N. Mihailescu

This paper aims to develop efficient and simple models for thermal distribution, melt pool dimensions and controlled phase change in the laser additive manufacturing (AM) of bulk

Abstract

Purpose

This paper aims to develop efficient and simple models for thermal distribution, melt pool dimensions and controlled phase change in the laser additive manufacturing (AM) of bulk and powder particles ceramic materials.

Design/methodology/approach

This paper proposes new analytical models for the AM of bulk and powder bed ceramic materials. A volumetric moving heat source, along with the complete melting of bulk and powder particle materials, is taken into account. Different values of laser absorption coefficient in solid and liquid states have been used to investigate the phase transformation. Furthermore, the pores and voids dimensions are also included in the modeling. Theoretical predictions have been compared with the experimental analyses and finite element simulations in laser to silicon nitride and laser to alumina interaction. The analysis focuses on the impact of laser power and scanning speed on the melt pool width and depth evolution into the bulk substrate and powder bed.

Findings

This study shows that the powder particles exhibit a higher thermal distribution value than the bulk substrate because of voids in the powder layer. The laser beam experiences multiple reflections in the presence of porosity/voids, thus increasing the surface absorption coefficient, which becomes relevant with the increment in the pore/void dimension. A direct relationship has been found between the laser power and melt pool dimensions, while the scanning speed displayed an inverse relationship for the melt pool width and length. Larger melt dimensions were inferred in the case of laser–powder particle interaction compared with laser–bulk substrate interaction. A close correlation was found between the analytical simulations, experimental investigations and numerical simulation results within the range of 4%–8%.

Originality/value

This paper fulfills an identified need to develop efficient and simplified models for ceramics laser AM by taking into account different laser absorption coefficients in solid and liquid form, voids and pores dimensions and controlled phase transformation to avoid vapors and plasma formation. The limitation of the finite element simulation model is that the solution is strongly dependent on the mesh quality and accuracy directly linked to the computation efficiency and time. A finer mesh requires a longer computing time than a coarse mesh. Finite element simulations require, however, specialized skills.

Article
Publication date: 13 October 2020

Russel Mhundwa and Michael Simon

This paper aims to show that a simplified surface fitting model can be efficient in determining the energy consumption during milk cooling by an on-farm direct expansion bulk milk…

Abstract

Purpose

This paper aims to show that a simplified surface fitting model can be efficient in determining the energy consumption during milk cooling by an on-farm direct expansion bulk milk cooler (DXBMC). The study reveals that milk volume and the temperature gradient between the room and the final milk temperature can effectively be used for predicting the energy consumption within 95% confidence bounds.

Design/methodology/approach

A data acquisition system comprised a Landis and Gyr E650 power meter, TMC6-HE temperature sensors, and HOBO UX120-006M 4-channel analog data logger was designed and built for monitoring of the DXBMC. The room temperature where the DXBMC is housed was measured using a TMC6-HE temperature sensor, connected to a Hobo UX120-006M four-channel analog data logger which was configured to log at one-minute intervals. The electrical energy consumed by the DXBMC was measured using a Landis and Gyr E650 meter while the volume of milk was extracted from on the farm records.

Findings

The results showed that the developed model can predict the electrical energy consumption of the DXBMC within an acceptable accuracy since 80% of the variation in the electrical energy consumption by the DXBMC was explained by the mathematical model. Also, milk volume and the temperature gradient between the room and final milk temperature in the BMC are primary and secondary contributors, respectively, to electrical energy consumption by the DXBMC. Based on the system that has been monitored the findings reveal that the DXBMC was operating within the expected efficiency level as evidenced by the optimized electrical energy consumption (EEC) closely mirroring the modelled EEC with a determination coefficient of 0.95.

Research limitations/implications

Only one system was monitored due to unavailability of funding to deploy several data acquisition systems across the country. The milk blending temperatures, effects of the insulation of the DXBMC, were not taken into account in this study.

Practical implications

The developed model is simple to use, cost effective and can be applied in real-time on the dairy farm which will enable the farmer to quickly identify an increase in the cooling energy per unit of milk cooled.

Social implications

The developed easy to use model can be used by dairy farmers on similar on-farm DXBMC; hence, they can devise ways to manage their energy consumption on the farm during the cooling of milk and foster some energy efficiency initiatives.

Originality/value

The implementation of the developed model can be useful to dairy farmers in South Africa. Through energy optimization, the maintenance of the DXBMC can be determined and scheduled accordingly.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 20 August 2019

Atif Alkhazali, Morad Etier, Mohammad Aljarrah, Akram Alsukker and Fathy Salman

The purpose of this study is to investigate the effect of the considerable Ag2SO4 content on the electrical and dielectric properties of (AgPO3)1−x(Ag2SO4)x ion glass system as…

Abstract

Purpose

The purpose of this study is to investigate the effect of the considerable Ag2SO4 content on the electrical and dielectric properties of (AgPO3)1−x(Ag2SO4)x ion glass system as well as to extract thermodynamic parameters.

Design/methodology/approach

Glass samples of (AgPO3)1-x(Ag2SO4)x with different mole ratios of Ag2SO4 [x = 0.00, 0.10,0.15,0.20 and 0.25] have been synthesized and used. X-ray diffraction and differential thermal analysis were used to investigate structural and thermal properties, and then the electrical characterizations of the bulk glasses were performed in different frequency and temperature range.

Findings

For different ratios of Ag2SO4 on AgPO3, the bulk conductivity is enhanced with increasing the amount of Ag2SO4 until the composition of x = 0.20, after which the conductivity decreases. The general behavior of both ε’ and ε” decreases with increasing frequency and increases with increasing temperature. Complex impedance analysis studied by Z‘−Z’ and Cole–Cole plot at different temperatures revealed that bulk resistance decreases with temperature.

Originality/value

The calculated values of activation free energy, enthalpy and entropy change for different compositions of (AgPO3)1-x(Ag2SO4)x showed an increase in activation energy and enthalpy when Ag2SO4 ratio is increased in (AgPO3)1-x(Ag2SO4)x composition up to 20%, and then there is a decrease in their values at x = 25%, which may be explained based on non-bridging oxygen.

Details

World Journal of Engineering, vol. 16 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 December 2019

Nishant Tiwari and Manoj Kumar Moharana

This paper aims to emphasize on studying various geometrical modification performed in wavy and raccoon microchannel by manipulating parameters, i.e. waviness (γ), expansion…

Abstract

Purpose

This paper aims to emphasize on studying various geometrical modification performed in wavy and raccoon microchannel by manipulating parameters, i.e. waviness (γ), expansion factor (α), wall to fluid thermal conductivity ratio (ksf), substrate thickness to channel height ratio (dsf) and Reynolds number (Re) for obtaining optimum parameter(s) that leads to higher heat dissipation rate.

Design/methodology/approach

A three-dimensional solid-fluid conjugate heat transfer numerical model is designed to capture flow characteristics and heat transfer in single-phase laminar flow microchannels. The governing equations are solved using finite volume method.

Findings

The results are presented in terms of average base temperature, average Nusselt number, pressure drop, dimensionless local heat flux, dimensionless wall and bulk fluid temperature, local Nusselt number and performance factor including axial conduction number. Heat dissipation rate with raccoon microchannel configuration is found to be higher compared to straight and wavy microchannel. With waviness of γ = 0.167, and 0.267 in wavy and raccoon microchannel, respectively, performance factor attains maximum value compared to other waviness for all values of Reynolds number. It is also found that the effect of axial wall conduction in wavy and raccoon microchannel is negligible. Additionally, thermal performance of wavy and raccoon microchannel is compared with straight microchannel.

Practical implications

In recent past years, much complex design of microchannel has been proposed for heat transfer enhancement, but the feasibility of available manufacturing techniques to fabricate complex geometries is still questionable. However, fabrication of wavy and raccoon microchannel is easy, and their heat dissipation capability is higher.

Originality/value

This makes the difference in wall and bulk fluid temperature smaller. Thus, present work highlighted the dominance of axial wall conduction on thermal and hydrodynamic performance of wavy and raccoon microchannel under conjugate heat transfer situation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 October 2018

Haroun Ragueb and Kacem Mansouri

The purpose of this study is to investigate the thermal response of the laminar non-Newtonian fluid flow in elliptical duct subjected to a third-kind boundary condition with a…

Abstract

Purpose

The purpose of this study is to investigate the thermal response of the laminar non-Newtonian fluid flow in elliptical duct subjected to a third-kind boundary condition with a particular interest to a non-Newtonian nanofluid case. The effects of Biot number, aspect ratio and fluid flow behavior index on the heat transfer have been examined carefully.

Design/methodology/approach

First, the mathematical problem has been formulated in dimensionless form, and then the curvilinear elliptical coordinates transform is applied to transform the original elliptical shape of the duct to an equivalent rectangular numerical domain. This transformation has been adopted to overcome the inherent mathematical deficiency due to the dependence of the ellipsis contour on the variables x and y. The yielded problem has been successfully solved using the dynamic alternating direction implicit method. With the available temperature field, several parameters have been computed for the analysis purpose such as bulk temperature, Nusselt number and heat transfer coefficient.

Findings

The results showed that the use of elliptical duct enhances significantly the heat transfer coefficient and reduces the duct’s length needed to achieve the thermal equilibrium. For some cases, the reduction in the duct’s length can reach almost 50 per cent compared to the circular pipe. In addition, the analysis of the non-Newtonian nanofluid case showed that the addition of nanoparticles to the base fluid improves the heat transfer coefficient up to 25 per cent. The combination of using an elliptical duct and the addition of nanoparticles has a spectacular effect on the overall heat transfer coefficient with an enhancement of 50-70 per cent. From the engineering applications view, the results demonstrate the potential of elliptical duct in building light-weighted compact shell-and-tube heat exchangers.

Originality/value

A complete investigation of the heat transfer of a fully developed laminar flow of power law fluids in elliptical ducts subject to the convective boundary condition with application to non-Newtonian nanofluids is addressed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 August 2017

Morteza Heydari and Hossein Shokouhmand

The purpose of this paper is to evaluate differences between the results of constant property and variable property approaches in solving the problem of Al2O3-water nanofluid heat…

Abstract

Purpose

The purpose of this paper is to evaluate differences between the results of constant property and variable property approaches in solving the problem of Al2O3-water nanofluid heat transfer in an annular microchannel. Also, the effect of nanoparticle diameter on flow and heat transfer characteristics is investigated.

Design/methodology/approach

Thermo-physical properties of the nanofluid including density, specific heat, viscosity and thermal conductivity are assumed to be temperature dependent. Governing equations are descritized using the finite volume method and solved by SIMPLE algorithm.

Findings

The results reveal that the constant property assumption is unable to predict the correct trend of variations along the microchannel for some of the characteristics, especially when the range of temperature change near the wall is considerable. In the fully developed region, constant property solution overestimates the values of shear stress near the walls of the microchannel. In addition, the values of Nusselt numbers are different for the two solutions. Furthermore, a decrease in wall’s shear stress has been observed as a result of increasing nanoparticle size.

Originality/value

This paper reflects that how the friction factor and heat transfer vary along the microchannel in temperature dependent modeling, which is not reflected in the results of constant property approach. To the best of the authors’ knowledge, there is no similar investigation of the effect of nanofluid variable properties with Pr=5 or in annular geometry.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 June 2019

Debayan Das, Leo Lukose and Tanmay Basak

The purpose of the paper is to study natural convection within porous square and triangular geometries (design 1: regular isosceles triangle, design 2: inverted isosceles…

Abstract

Purpose

The purpose of the paper is to study natural convection within porous square and triangular geometries (design 1: regular isosceles triangle, design 2: inverted isosceles triangle) subjected to discrete heating with various locations of double heaters along the vertical (square) or inclined (triangular) arms.

Design/methodology/approach

Galerkin finite element method is used to solve the governing equations for a wide range of modified Darcy number, Dam = 10−5–10−2 with various fluid saturated porous media, Prm = 0.015 and 7.2 at a modified Rayleigh number, Ram = 106 involving the strategic placement of double heaters along the vertical or inclined arms (types 1-3). Adaptive mesh refinement is implemented based on the lengths of discrete heaters. Finite element based heat flow visualization via heatlines has been adopted to study heat distribution at various portions.

Findings

The strategic positioning of the double heaters (types 1-3) and the convective heatline vortices depict significant overall temperature elevation at both Dam = 10−4 and 10−2 compared to type 0 (single heater at each vertical or inclined arm). Types 2 and 3 are found to promote higher temperature uniformity and greater overall temperature elevation at Dam = 10−2. Overall, the triangular design 2 geometry is also found to be optimal in achieving greater temperature elevation for the porous media saturated with various fluids (Prm).

Practical implications

Multiple heaters (at each side [left or right] wall) result in enhanced temperature elevation compared to the single heater (at each side [left or right] wall). The results of the current work may be useful for the material processing, thermal storage and solar heating applications.

Originality/value

The heatline approach is used to visualize the heat flow involving double heaters along the side (left or right) arms (square and triangular geometries) during natural convection involving porous media. The heatlines depict the trajectories of heat flow that are essential for thermal management involving larger thermal elevation. The mixing cup or bulk average temperature values are obtained for all types of heating (types 0-3) involving all geometries, and overall temperature elevation is examined based on higher mixing cup temperature values.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 April 2024

Guilherme Homrich, Aly Ferreira Flores Filho, Paulo Roberto Eckert and David George Dorrell

This paper aims to introduce an alternative for modeling levitation forces between NdFeB magnets and bulks of high-temperature superconductors (HTS). The presented approach should…

Abstract

Purpose

This paper aims to introduce an alternative for modeling levitation forces between NdFeB magnets and bulks of high-temperature superconductors (HTS). The presented approach should be evaluated through two different formulations and compared with experimental results.

Design/methodology/approach

The T-A and H-ϕ formulations are among the most efficient approaches for modeling superconducting materials. COMSOL Multiphysics was used to apply them to magnetic levitation models and predict the forces involved.The permanent magnet movement is modeled by combining moving meshes and magnetic field identity pairs in both 2D and 3D studies.

Findings

It is shown that it is possible to use the homogenization technique for the T-A formulation in 3D models combined with mixed formulation boundaries and moving meshes to simulate the whole device’s geometry.

Research limitations/implications

The case studies are limited to the formulations’ implementation and a brief assessment regarding degrees of freedom. The intent is to make the simulation straightforward rather than establish a benchmark.

Originality/value

The H-ϕ formulation considers the HTS bulk domain as isotropic, whereas the T-A formulation homogenization approach treats it as anisotropic. The originality of the paper lies in contrasting these different modeling approaches while incorporating the external magnetic field movement by means of the Lagrangian–Eulerian method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 6000