Search results

1 – 10 of 112
Open Access
Article
Publication date: 29 March 2024

Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Abstract

Purpose

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Design/methodology/approach

Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.

Findings

The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.

Originality/value

The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 18 September 2023

Peiwen Sun, Jianwei Yang, AiHua Zhu, Zhongshuo Hu, Jinhai Wang, Fu Liu and Xiaohui Wang

The CL60 steel wheels of subway vehicles operating on specific lines require frequent refurbishment due to rapid wear and tear. Considering this issue, MoS2-based and…

Abstract

Purpose

The CL60 steel wheels of subway vehicles operating on specific lines require frequent refurbishment due to rapid wear and tear. Considering this issue, MoS2-based and graphite-based solid lubricants are used to reduce the wear rate of subway wheels and extend their service life.

Design/methodology/approach

Under laboratory conditions, the effect of MoS2-based and graphite-based solid lubricants on the friction and wear performance of subway wheels and rails was evaluated using a modified GPM-60 wear testing machine.

Findings

Under laboratory conditions, MoS2-based solid lubricants have the best effect in reducing wheel/rail wear, compared to the control group without lubrication, at 2 × 105 revolutions, the total wheel-rail wear decreased by 95.07%. However, when three types of solid lubricants are used separately, the hardness evolution of the wheel-rail contact surface exhibits different characteristics.

Practical implications

The research results provide important support for improving the lifespan of wheel and rail, extending the service cycle of wheel and rail, reducing the operating costs of subway systems, improving the safety of subway systems and providing wear reduction maintenance for other high wear mechanical components.

Originality/value

The experiment was conducted through the design and modification of a GPM-60 testing machine for wear testing. The experiment simulated the wheel-rail contact situation under actual subway operation and evaluated the effects of three different solid lubricants, MoS2-based and graphite-based, on the wear performance and surface hardening evolution of subway wheel-rail.

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 17 May 2022

Chongyi Chang, Yuanwu Cai, Bo Chen, Qiuze Li and Pengfei Lin

In service, the periodic clashes of wheel flat against the rail result in large wheel/rail impact force and high-frequency vibration, leading to severe damage on the wheelset…

Abstract

Purpose

In service, the periodic clashes of wheel flat against the rail result in large wheel/rail impact force and high-frequency vibration, leading to severe damage on the wheelset, rail and track structure. This study aims to analyze characteristics and dynamic impact law of wheel and rail caused by wheel flat of high-speed trains.

Design/methodology/approach

A full-scale high-speed wheel/rail interface test rig was used for the test of the dynamic impact of wheel/rail caused by wheel flat of high-speed train. With wheel flats of different lengths, widths and depths manually set around the rolling circle of the wheel tread, and wheel/rail dynamic impact tests to the flats in the speed range of 0–400 km/h on the rig were conducted.

Findings

As the speed goes up, the flat induced the maximum of the wheel/rail dynamic impact force increases rapidly before it reaches its limit at the speed of around 35 km/h. It then goes down gradually as the speed continues to grow. The impact of flat wheel on rail leads to 100–500 Hz middle-frequency vibration, and around 2,000 Hz and 6,000 Hz high-frequency vibration. In case of any wheel flat found during operation, the train speed shall be controlled according to the status of the flat and avoid the running speed of 20 km/h–80 km/h as much as possible.

Originality/value

The research can provide a new method to obtain the dynamic impact of wheel/rail caused by wheel flat by a full-scale high-speed wheel/rail interface test rig. The relations among the flat size, the running speed and the dynamic impact are hopefully of reference to the building of speed limits for HSR wheel flat of different degrees.

Details

Railway Sciences, vol. 1 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 1 June 2022

Xiaopeng Wang, Kun Peng, Meiyun Zhao, Hongliang Tian and Hongling Qin

The purpose of this paper is to propose a wheel/rail mixed lubrication model to study the water lubrication behavior of wheel/rail contact interface.

Abstract

Purpose

The purpose of this paper is to propose a wheel/rail mixed lubrication model to study the water lubrication behavior of wheel/rail contact interface.

Design/methodology/approach

The numerical simulation method is applied in this paper. A deterministic mixed lubrication model considering surface roughness and transient state is established. The quasi-system numerical and finite difference method are used for numerical solution. The model is verified by comparing with the experimental data in the literature under the same conditions.

Findings

Under wet conditions, the change of train speed will change the lubrication state of the wheel/rail contact interface. With an increasing speed, the average film thickness and the film thickness ratio increase, while the adhesion coefficient, the contact load ratio and the contact area ratio decrease. When the creep ratio increases from 0% to 0.5%, the wheel/rail adhesion coefficient and subsurface stress increase sharply. With the increase of axle load, the average film thickness decreases and the adhesion coefficient increases.

Practical implications

This paper aims to improve the mixed lubrication theory by analyzing the characteristics of wheel/rail friction and lubrication, so as to provide some guidance and theory for train driving behavior.

Originality/value

Using the deterministic model, the lubrication state of the wheel/rail contact interface affected by various external factors and the adhesion behavior of wheel/rail progressive process from boundary lubrication to mixed lubrication are studied.

Details

Industrial Lubrication and Tribology, vol. 74 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 19 March 2024

Chun Tian, Gengwei Zhai, Mengling Wu, Jiajun Zhou and Yaojie Li

In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface, this study aims to analyze the…

Abstract

Purpose

In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface, this study aims to analyze the utilization of wheel-rail adhesion coefficient under different medium conditions and propose relevant measures for reasonable and optimized utilization of adhesion to ensure the traction/braking performance and operation safety of trains.

Design/methodology/approach

Based on the PLS-160 wheel-rail adhesion simulation test rig, the study investigates the variation patterns of maximum utilized adhesion characteristics on the rail surface under different conditions of small creepage and large slip. Through statistical analysis of multiple sets of experimental data, the statistical distribution patterns of maximum utilized adhesion on the rail surface are obtained, and a method for analyzing wheel-rail adhesion redundancy based on normal distribution is proposed. The study analyzes the utilization of traction/braking adhesion, as well as adhesion redundancy, for different medium under small creepage and large slip conditions. Based on these findings, relevant measures for the reasonable and optimized utilization of adhesion are derived.

Findings

When the third-body medium exists on the rail surface, the train should adopt the low-level service braking to avoid the braking skidding by extending the braking distance. Compared with the current adhesion control strategy of small creepage, adopting appropriate strategies to control the train’s adhesion coefficient near the second peak point of the adhesion coefficient-slip ratio curve in large slip can effectively improve the traction/braking adhesion redundancy and the upper limit of adhesion utilization, thereby ensuring the traction/braking performance and operation safety of the train.

Originality/value

Most existing studies focus on the wheel-rail adhesion coefficient values and variation patterns under different medium conditions, without considering whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train. Therefore, there is a risk of traction overspeeding/braking skidding. This study analyzes whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train and whether there is redundancy. Based on these findings, relevant measures for the reasonable and optimized utilization of adhesion are derived to further ensure operation safety of the train.

Article
Publication date: 25 May 2023

Yuqi Yang, Bing Wu, Guanwen Xiao and Quan Shen

The purpose of this study is to develop a 3D wheel-rail adhesion model under wet condition, which considers the generated surface roughness topography and the traditional braking…

Abstract

Purpose

The purpose of this study is to develop a 3D wheel-rail adhesion model under wet condition, which considers the generated surface roughness topography and the traditional braking procedure for high-speed trains.

Design/methodology/approach

Wheel-rail adhesion has an important effect on the braking ability of railway vehicle. Based on the deterministic mixed lubrication approach, the model was solved to get the adhesion characteristics of the train during braking. The elastic deformation was calculated with the discrete convolution and fast Fourier transform method. The simulation results of adhesion coefficient were compared with the experimental values. The wheel-rail adhesion characteristics of train braking at several different initial speeds were investigated. The effects of the time-step length and roughness orientation on the contact load ratio were also discussed.

Findings

The results show that the adhesion coefficient of the numerical model is in good agreement with the experimental results. At the instant of braking, the adhesion coefficient drops to a lower adhesion level, the value of adhesion coefficient is lower than 0.06, especially at a higher speed (200, 300 and 400 km/h).

Originality/value

It can provide a better understanding of the low adhesion phenomenon of train braking under wet condition.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2023-0040/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 March 2023

AiHua Zhu, Shang Yang, Jianwei Yang, Dongping Long and Xin Li

Metro wheels running on different lines can undergo wear at different positions. This paper aims to investigate the effects of wheel wear at two typical positions, i.e. wheel…

74

Abstract

Purpose

Metro wheels running on different lines can undergo wear at different positions. This paper aims to investigate the effects of wheel wear at two typical positions, i.e. wheel flange and tread, on the dynamic performance of metro vehicles and analyzes the differences, with an aim of providing theoretical support on wheel reprofiling for different metro lines.

Design/methodology/approach

Wheel profile data were measured on two actual metro lines, denoted A and B. It was observed that wheel wear on Lines A and B was concentrated on flanges and treads, respectively. A metro vehicle dynamics model was built using multibody dynamics software SIMPACK. Then it was applied to analyze the differences in effects of wheel wear at different positions on vehicle dynamic performance (VDP) for various speeds (50, 60 and 70 km/h) and line conditions (straight line, R1000m, R600m and R300m curves). Critical speed and vibration acceleration were used as indicators of VDP during linear motion (on straight track), while VDP during curvilinear motion (on curved track) was evaluated in terms of wheel/rail lateral force, wheel/rail vertical force, derailment coefficient and wheel unloading rate.

Findings

First, compared to wheel profile with tread wear, wheel profile with flange wear showed better performance during linear motion. When the distance traveled reached 8 × 104 and 14 × 104 km, the vehicle’s critical speed was 12.2 and 21.6% higher, respectively. The corresponding vertical and lateral vibration accelerations were 59.7 and 74.8% lower. Second, compared to wheel profile with flange wear, that with tread wear showed better performance during curvilinear motion, with smaller wheel/rail lateral force, derailment coefficient and wheel unloading rate. When the vehicle speed was 50, 60 and 70 km/h, the maximum difference in the three indicators between the two wheel profiles was 40.2, 44.7 and 23.1%, respectively. For R1000m, R600m and R300m curves, the corresponding maximum difference was 45.7, 69.0 and 44.4%, respectively.

Practical implications

The results of the study can provide a guidance and theoretical support on wheel reprofiling for different metro lines. On lines with large proportions of curved sections, metro vehicles are more prone to wheel flange wear and have poorer dynamic performance during curvilinear motion. Therefore, more attention should be paid to flange lubrication and maintenance for such lines. On lines with higher proportions of straight sections, metro vehicles are more prone to tread wear and have poorer performance on straight sections. So, tread maintenance and service requires more attention for such lines.

Originality/value

Existing research has focused primarily on the effects of wheel wear on VDP, but fails to consider the differences in the effects of wheel wear at different positions on VDP. In actual metro operation, the position of wheel wear can vary significantly between lines. Based on measured positions of wheel wear, this paper examines the differences in the effects of wheel wear at two typical positions, i.e. tread and flange, on VDP in detail.

Details

Industrial Lubrication and Tribology, vol. 75 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 January 2023

Qunsheng Wang, Bin Zhu, Fubin Zhang, Xuesong Jiang and Jie Wang

While the normal wheel–rail contact model cannot be accurately used for light rail transit (LRT) wheel wear analysis with large wheelset lateral displacement and wheelset yaw…

70

Abstract

Purpose

While the normal wheel–rail contact model cannot be accurately used for light rail transit (LRT) wheel wear analysis with large wheelset lateral displacement and wheelset yaw angle, a modified semi-Hertzian contact model (MSHM) is proposed in the paper.

Design/methodology/approach

MSHM was first proposed to consider the wheelset motion with the lateral displacement and the yaw angle. Then, a dynamic model of an LRT was established and the influence of some key factors on wheel wear is analyzed. At last, after operating for a certain mileage, the predicted wheel wear is compared with the tested wheel wear.

Findings

Compared with the tested wheel wear, the predicted wheel wear shows a good agreement with the measured result, verifying the accuracy of MSHM.

Originality/value

Considering larger wheelset lateral displacement and yaw angle, MSHM can be used to calculate the wheel wear of the LRT with high accuracy.

Details

Industrial Lubrication and Tribology, vol. 75 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 December 2023

Zhaoyang Wang, Bing Wu, Jiaqing Huang, Yuqi Yang and Guangwen Xiao

The purpose of this study is to develop a transient wheel–rail rolling contact model to primarily investigate the rail damage under wet condition when the train passes through the…

Abstract

Purpose

The purpose of this study is to develop a transient wheel–rail rolling contact model to primarily investigate the rail damage under wet condition when the train passes through the welded joints.

Design/methodology/approach

The impact force induced by welded joints is obtained through vehicle–track coupling dynamics. The normal and tangential wheel–rail contact pressures were solved by elastohydrodynamic lubrication (EHL) theory and simplified third-body layer theory, respectively. Then, the obtained tangential pressure and normal pressure were applied to the finite element model as moving loads, simulating cyclic loading. Finally, the shakedown map and critical plane method were used to predict rolling contact fatigue (RCF) and the initiation of fatigue cracks.

Findings

The results indicate that RCF will occur and fatigue cracks are more prone to appear on the subsurface of the rail, specifically around 2.7 mm below the rail surface in the vicinity of the welded joint and its heat-affected zone.

Originality/value

The cosimulation of numerical model and finite element model was implemented. The influence of surface roughness and fluids was considered. In this model, the normal and tangential wheel–rail contact pressure, the stress and strain and the rail fatigue cracks were obtained under a rail-welded joint excitation.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 July 2023

Hongxiao Li and Li Li

The purpose of this study is to match appropriate friction coefficients for subway operational vehicles, considering the dynamic variations of wheel profile wear.

Abstract

Purpose

The purpose of this study is to match appropriate friction coefficients for subway operational vehicles, considering the dynamic variations of wheel profile wear.

Design/methodology/approach

This study combines experimental testing and numerical simulation to investigate the influence of wheel profile wear coupled with the friction coefficient on the vehicle dynamic response.

Findings

For the test route in this paper, it is recommended to control the friction coefficient on straight sections between 0.25 and 0.3, and on curved sections between 0.2 and 0.3. This satisfies the required adhesion coefficient for normal train traction and braking, while also ensuring the straight running performance and curve negotiation performance of the vehicle.

Practical implications

Reasonable friction coefficient ranges are proposed for straight and curved track lines to improve the operational safety and economy of the vehicles. Moreover, this study can provide a theoretical basis and reference direction for developing anti-wear measures for rail vehicles operating on fixed routes.

Originality/value

Considering the wear characteristics of operating vehicles and the dynamic changes in the wear profile, this paper explores the adaptability of different degrees of wheel wear profiles to different friction coefficients. Based on the response characteristics of vehicle dynamics, reasonable lubrication recommendations are proposed for this operating vehicle.

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 112