Search results

1 – 10 of 368
Article
Publication date: 4 December 2017

Mahmoud Salari, Mohammad Mehdi Rashidi, Emad Hasani Malekshah and Masoud Hasani Malekshah

Because the local Re numbers, ratio of inertia to viscous forces, are not same at different regions of the enclosures, the present study aims to deal with the influences of using…

Abstract

Purpose

Because the local Re numbers, ratio of inertia to viscous forces, are not same at different regions of the enclosures, the present study aims to deal with the influences of using the turbulent/transition models on numerical results of the natural convection and flow field within a trapezoidal enclosure.

Design/methodology/approach

The three-dimensional (3D) trapezoidal enclosure with different inclined side walls of 75, 90 and 105 degrees are considered, where the side walls are heated and cooled at Ra = 1.5 × 109 for all cases. The turbulent models of the k-ε-RNG, k- ω-shear-stress transport (SST) and the newly developed transition/turbulent model of Reθ-γ-transition SST are utilized to analyze the fluid flow and heat transfer characteristics within the enclosure and compared their results with validated results.

Findings

Comprehensive comparisons have been carried out for all cases in terms of flow and temperature fields, as well as turbulent quantities, such as turbulent kinetic energy and turbulent viscosity ratio. Furthermore, the velocity and thermal boundary layers have been investigated, and the approximate transition regions for laminar, transitional and turbulent regimes have been determined. Finally, the heat transfer coefficient and skin friction coefficient values have been presented and compared in terms of different turbulent models and configurations. The results show that the transition/turbulence model has better prediction for the flow and heat fields than fully turbulent models, especially for local parameters for all abovementioned governing parameters.

Originality value

The originality of this work is to analyze the 3D turbulent/transitional natural convection with different turbulence/transition models in a trapezoidal enclosure.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 October 2018

Hailang Zhang, Yu Hu and Gengqi Wang

This paper aims to investigate the impact of aerofoil camber on the performance of micro-air-vehicle-scale cycloidal propellers.

Abstract

Purpose

This paper aims to investigate the impact of aerofoil camber on the performance of micro-air-vehicle-scale cycloidal propellers.

Design/methodology/approach

First, experiments were conducted to validate the numerical methodology. After that, three turbulent models were compared to select the most accurate one. Then, 2D numerical simulation was carried out on 11 aerofoils with different cambers, including five cambered aerofoils, one symmetrical aerofoil and five inverse cambered aerofoils. The inverse cambered aerofoils are symmetrical about the chord line to the corresponding cambered ones.

Findings

The cycloidal propeller with large cambered aerofoil gives the lowest hovering efficiency, but with symmetrical aerofoil or small inverse cambered aerofoil shows the highest. Also, blades with large cambered aerofoil display high performance at the upper part of its trajectory, while with symmetrical aerofoil or the inverse cambered aerofoil have their best at the lower part. In addition, intensified downwash can be observed in the rotor cage for all cases. When a blade runs through the top-left part of its circle path, all cases display the feature of deep dynamic stall. When the blade travels through the nadir of its path, the actual angle of attack is close to zero due to the strong downwash. Furthermore, there exits intensified blade-vortex interaction induced by the preceding blade for large cambered aerofoils at the lower-right part of its trajectory.

Practical implications

This paper develops a new cycloidal propeller which is more efficient than the one already present.

Originality/value

This paper discovers that the aerofoil camber is a vital design parameter in the performance of cycloidal propeller, and the authors expect that the rotor with deformable aerofoil on camber would achieve much higher efficiency.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 June 2019

Mehdi Dadkhah, Mehran Masdari, Mohammad Ali Vaziri and Mojtaba Tahani

In this paper, experimental and numerical results of a lambda wing have been compared. The purpose of this paper is to study the behaviour of lambda wings using a CFD tool and to…

Abstract

Purpose

In this paper, experimental and numerical results of a lambda wing have been compared. The purpose of this paper is to study the behaviour of lambda wings using a CFD tool and to consider different numerical models to obtain the most accurate results. As far as the consideration of numerical methods is concerned, the main focus is on the evaluation of computational methods for an accurate prediction of contingent leading edge vortices’ path and the flow separation occurring because of the burst of these vortices on the wing.

Design/methodology/approach

Experimental tests are performed in a closed-circuit wind tunnel at the Reynolds number of 6 × 105 and angles of attack (AOA) ranging from 0 to 10 degrees. Investigated turbulence models in this study are Reynolds Averaged Navior–Stokes (RANS) models in a steady state. To compare the accuracy of the turbulence models with respect to experimental results, sensitivity study of these models has been plotted in bar charts.

Findings

The results illustrate that the leading edge vortex on this lambda wing is unstable and disappears soon. The effect of this disappearance is obvious by an increase in local drag coefficient in the junction of inner and outer wings. Streamlines on the upper surface of the wing show that at AOA higher than 8 degrees, the absence of an intense leading edge vortex leads to a local flow separation on the outer wing and a reverse in the flow.

Research limitations/implications

Results obtained from the behaviour study of transition (TSS) turbulence model are more compatible with experimental findings. This model predicts the drag coefficient of the wing with the highest accuracy. Of all considered turbulence models, the Spalart model was not able to accurately predict the non-linearity of drag and pitching moment coefficients. Except for the TSS turbulence model, all other models are unable to predict the aerodynamic coefficients corresponding to AOA higher than 10 degrees.

Practical implications

The presented results in this paper include lift, drag and pitching moment coefficients in various AOA and also the distribution of aerodynamic coefficients along the span.

Originality/value

The presented results include lift, drag and pitching moment coefficients in various AOA and also aerodynamic coefficients distribution along the span.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 February 2018

Yasser M. Ahmed and A.H. Elbatran

This paper aims to investigate numerically the turbulent flow characteristics over a backward facing step. Different turbulence models with hybrid computational grid have been…

Abstract

Purpose

This paper aims to investigate numerically the turbulent flow characteristics over a backward facing step. Different turbulence models with hybrid computational grid have been used to study the detached flow structure in this case. Comparison between the numerical results and the available experiment data is carried out in the present study. The results of the different turbulence models were in a good agreement with the experimental results. The numerical results also concluded that the k-kl-ω turbulence model gave favorable results compared with the experiment.

Design/methodology/approach

It is very important to study the flow characteristics of detached flows. Therefore, the current study investigates numerically the flow characteristics in backward facing step by using two-, three- and seven-equation turbulence models in the finite volume code ANSYS Fluent. In addition, hybrid grid has been used to improve the capability of the unstructured mesh elements for predicting the flow separation in this case. Comparison between the different turbulence models and the available experimental data was done to find the most suitable turbulence model for simulating such cases of detached flows.

Findings

The present numerical simulations with the different turbulence models predicted efficiently the flow characteristics over the backward facing step. The transition k-kl-ω gave the best acceptable results compared with experimental data. This is a good concluded remark in the fields of fluid mechanics and hydrodynamics because the phenomenon of flow separation is not easy to be predicted numerically and can affect greatly on the predicted drag of moving bodies in many engineering applications.

Originality/value

The CFD results of using different turbulence models have been validated with the experimental work, and the results of k-kl-ω proven acceptable with flow characteristics. The results of the current study conclude that the use of k-kl-ω turbulence model will contribute towards a more efficient utilization in the fields of fluid mechanics and hydrodynamics.

Details

World Journal of Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 June 2021

Aleksandar Kovačević, Jelena Svorcan, Mohammad Sakib Hasan, Toni Ivanov and Miroslav Jovanović

Modern unmanned air vehicles (UAVs) are usually equipped with rotors connected to electric motors that enable them to hover and fly in all directions. The purpose of the paper is…

Abstract

Purpose

Modern unmanned air vehicles (UAVs) are usually equipped with rotors connected to electric motors that enable them to hover and fly in all directions. The purpose of the paper is to design optimal composite rotor blades for such small UAVs and investigate their aerodynamic performances both computationally and experimentally.

Design/methodology/approach

Artificial intelligence method (genetic algorithm) is used to optimize the blade airfoil described by six input parameters. Furthermore, different computational methods, e.g. vortex methods and computational fluid dynamics, blade element momentum theory and finite element method, are used to predict the aerodynamic performances of the optimized airfoil and complete rotor as well the structural behaviour of the blade, respectively. Finally, composite blade is manufactured and the rotor performance is also determined experimentally by thrust and torque measurements.

Findings

Complete process of blade design (including geometry definition and optimization, estimation of aerodynamic performances, structural analysis and blade manufacturing) is conducted and explained in detail. The correspondence between computed and measured thrust and torque curves of the optimal rotor is satisfactory (differences mostly remain below 15%), which validates and justifies the used design approach formulated specifically for low-cost, small-scale propeller blades. Furthermore, the proposed techniques can easily be applied to any kind of rotating lifting surfaces including helicopter or wind turbine blades.

Originality/value

Blade design methodology is simplified, shortened and made more flexible thus enabling the fast and economic production of propeller blades optimized for specific working conditions.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 August 2020

Yujun Wang, Qiang Li, Shuo Zhang, Xinhao Tang, Weiwei Xu and Zhenbo Wang

The loading mechanism of textures considering turbulence has not been fully covered. This paper aims to investigate the effect of turbulence on the textured loading capacity under…

Abstract

Purpose

The loading mechanism of textures considering turbulence has not been fully covered. This paper aims to investigate the effect of turbulence on the textured loading capacity under water lubrication and to analyze the causes of the turbulence effect.

Design/methodology/approach

Computational fluid dynamic models with different textured shapes are established after validation. The transition shear stress transport (SST) model, which is suitable for predicting the transition process of fluid from laminar state to turbulent state, is adopted in the present study. To illustrate the effect of turbulence, the loading capacity of textures predicted by transition SST model and laminar model is compared.

Findings

The loading capacity is higher after considering turbulence because more lubricant enters into textures and the flow rate of lubricant to textured outlet increases. There exists an optimal textured depth ratio and density for loading capacity and the change of flow state would not affect the optimal values. The degree of fluid blockage at textured outlet has a dominant influence on loading capacity. As the textured shape changes to triangle or ellipse from rectangle, the vortices at the textured bottom move forward and the blockage at a textured outlet is enhanced, which makes loading capacity improved under the action of blocking effect.

Originality/value

The enhancement of the blocking effect is found to be crucial to the improvement of textured loading capacity after considering turbulence. Present research provides references to understand the loading mechanism of textures under turbulent conditions.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2020-0149/

Details

Industrial Lubrication and Tribology, vol. 73 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 August 2023

Samir Ouchene, Arezki Smaili and Hachimi Fellouah

This paper aims to investigate the problem of estimating the angle of attack (AoA) and relative velocity for vertical axis wind turbine (VAWT) blades from computational fluid…

Abstract

Purpose

This paper aims to investigate the problem of estimating the angle of attack (AoA) and relative velocity for vertical axis wind turbine (VAWT) blades from computational fluid dynamics data.

Design/methodology/approach

Two methods are implemented as function objects within the OpenFOAM framework for estimating the blade’s AoA and relative velocity. For the numerical analysis of the flow around and through the VAWT, 2 D unsteady Reynolds-averaged Navier–Stokes (URANS) simulations are carried out and validated against experimental data.

Findings

To gain a better understanding of the complex flow features encountered by VAWT blades, the determination of the AoA is crucial. Relying on the geometrically-derived AoA may lead to wrong conclusions about blade aerodynamics.

Practical implications

This study can lead to the development of more robust optimization techniques for enhancing the variable-pitch control mechanism of VAWT blades and improving low-order models based on the blade element momentum theory.

Originality/value

Assessment of the reliability of AoA and relative velocity estimation methods for VAWT’ blades at low-Reynolds numbers using URANS turbulence models in the context of dynamic stall and blade–vortex interactions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 December 2021

Xiaolong Yang, Zhuangzhi Liu and Yu Hu

The purpose of this paper is to investigate the mechanism and performance of a potential strategy, which is to enhance turbulence to carry out drag reduction for heavy trucks.

95

Abstract

Purpose

The purpose of this paper is to investigate the mechanism and performance of a potential strategy, which is to enhance turbulence to carry out drag reduction for heavy trucks.

Design/methodology/approach

Enhancing turbulence deflector (ETD) was placed on the roof surface of an ground transportation system (GTS) to investigate the drag reduction mechanism of enhancing turbulence. Transition shear-stress transport improved delay detach eddy simulation model was adopted to simulate the unsteady small-scale flow around the ETD.

Findings

By optimizing the three influencing factors, diameter, streamwise length and streamwise position, the optimized ETD has achieved a maximum drag reduction of 7.04%. The analysis of flow field results shows that enhancing turbulence can effectively suppress flow separation and reduce the negative pressure intensity in the wake region of GTS.

Originality/value

The present work provides another potential possibility for the improvement of the aerodynamic performance of heavy trucks.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 September 2019

Zhiguo Tang, Hai Li, Feng Zhang, Xiaoteng Min and Jianping Cheng

The purpose of this paper is to explore the flow and heat transfer characteristics of the jet impingement onto a conical heat sink and evaluate the ability of heat transfer…

Abstract

Purpose

The purpose of this paper is to explore the flow and heat transfer characteristics of the jet impingement onto a conical heat sink and evaluate the ability of heat transfer enhancement.

Design/methodology/approach

A numerical study of the flow and heat transfer of liquid impingement on cone heat sinks was conducted, and transition SST turbulence model was validated and adopted. The flow and thermal performances were investigated with the Reynolds number that ranges from 5,000 to 23,000 and cone angle that ranges from 0° to 70° in four regions.

Findings

Local Nusselt numbers are large, and pressure coefficients drop rapidly near the stagnation point. In the conical bottom edge, a secondary inclined jet was observed, thereby introducing a horseshoe vortex that causes drastic fluctuations in the curves of the flow and heat transfer. The average Nusselt numbers are higher in a conical protuberance than in flat plates in most cases, thus indicating that the heat transfer performance of jet impingement can be improved by a cone heat sink. The maximum increase is 13.6 per cent when the cone angle is 60°, and the Reynolds number is 23,000.

Originality/value

The flow and heat transfer behavior at the bottom edge of the cone heat sink is supplemented. The average heat transfer capacity of different heat transfer radii was evaluated, which provided a basis for the study of cone arrays.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 June 2020

Taurista Perdana Syawitri, Yufeng Yao, Jun Yao and Budi Chandra

The aim of this paper is to assess the ability of a stress-blended eddy simulation (SBES) turbulence model to predict the performance of a three-straight-bladed vertical axis wind…

Abstract

Purpose

The aim of this paper is to assess the ability of a stress-blended eddy simulation (SBES) turbulence model to predict the performance of a three-straight-bladed vertical axis wind turbine (VAWT). The grid sensitivity study is conducted to evaluate the simulation accuracy.

Design/methodology/approach

The unsteady Reynolds-averaged Navier–Stokes equations are solved using the computational fluid dynamics (CFD) technique. Two types of grid topology around the blades, namely, O-grid (OG) and C-grid (CG) types, are considered for grid sensitivity studies.

Findings

With regard to the power coefficient (Cp), simulation results have shown significant improvements of predictions using compared to other turbulence models such as the k-e model. The Cp distributions predicted by applying the CG mesh are in good agreement with the experimental data than that by the OG mesh.

Research limitations/implications

The current study provides some new insights of the use of SBES turbulence model in VAWT CFD simulations.

Practical implications

The SBES turbulence model can significantly improve the numerical accuracy on predicting the VAWT performance at a lower tip speed ratio (TSR), which other turbulence models cannot achieve. Furthermore, it has less computational demand for the finer grid resolution used in the RANS-Large Eddy Simulation (LES) “transition” zone compared to other hybrid RANS-LES models.

Originality/value

To authors’ knowledge, this is the first attempt to apply SBES turbulence model to predict VAWT performance resulting for accurate CFD results. The better prediction can increase the credibility of computational evaluation of a new or an improved configuration of VAWT.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 368