Search results

1 – 10 of 263
Article
Publication date: 6 November 2023

Oktay Çiçek, A. Filiz Baytaş and A. Cihat Baytaş

This study aims to numerically scrutinize the entropy generation minimization and mixed convective heat transfer of multi-walled carbon nanotubes–Fe3O4/water hybrid nanofluid flow…

Abstract

Purpose

This study aims to numerically scrutinize the entropy generation minimization and mixed convective heat transfer of multi-walled carbon nanotubes–Fe3O4/water hybrid nanofluid flow in a lid-driven square enclosure with heat generation in the presence of a porous layer on inner surfaces, considering local thermal non-equilibrium (LTNE) approach and the non-Darcy flow model.

Design/methodology/approach

The dimensionless governing equations for hybrid nanofluid and solid phases are solved by applying the finite volume method and semi-implicit method for pressure-linked equations algorithm.

Findings

The roles of the internal heat generation in the porous layer, LTNE model and nanoparticles volume fraction on mixed convection phenomenon and entropy generation are introduced for lid-driven cavity hybrid nanofluid flow. Based on the investigation of entropy generation and heat transfer, the minimum total entropy generation and average Nusselt numbers are found at 1 ≤ Ri ≤ 10 where the effect of the forced and free convection flow directions being opposite each other is very significant. When considering various nanoparticle volume fractions, it becomes evident that the minimum entropy generation occurs in the case of φ = 0.1%. The outcomes of LTNE number reveal the operating parameters in which thermal equilibrium occurs between hybrid nanofluid and solid phases.

Originality/value

The analysis of entropy generation under various shear and buoyancy forces plays a significant role in the suitable thermal design and optimization of mixed convective heat transfer applications. This research significantly contributes to the optimization of design and the advancement of innovative solutions across diverse engineering disciplines, such as packed-bed thermal energy storage and thermal insulation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 May 2023

Samrat Hansda and Swapan K. Pandit

This paper aims to study the impact of convexity and concavity of the vertical borders on double-diffusive mixed convection. In addition, the study of entropy generation is…

Abstract

Purpose

This paper aims to study the impact of convexity and concavity of the vertical borders on double-diffusive mixed convection. In addition, the study of entropy generation is performed. This numerical study has been carried out for different patterns of wavy edges to reveal their effects on heat and mass transfer phenomena.

Design/methodology/approach

Four different flow features are treated by varying the directions of convexity and concavity of the vertical walls. A uniform temperature, as well as concentration distributions, are introduced to the left border while keeping a cold temperature and low concentration for the right border. The horizontal boundaries are in adiabatic condition. The upper border of the chamber is moving in the right direction with an equal speed. The governing Navies–Stokes equations are designed to describe energy and species transport phenomena, and these equations are solved by compact scheme.

Findings

The investigated results are analyzed for various parameters, namely, Prandtl number, Richardson number, thermal Grashof number, Lewis number, Buoyancy ratio and amplitude of the wavy walls. It is observed that the thermal and solutal transfer performance becomes effective with lower Richardson numbers. The results reveal that the concavity and convexity of the side borders of the cabinet can control the thermosolutal performance. It is also observed that among all wavy chambers, Case-4 records maximum thermosolutal transfer rate, while Case-3 attains minimum thermosolutal transfer rate.

Originality/value

This work is an example of solar thermal power conversion, power collection systems, systems of energy deficiency, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 December 2023

Nirmal K. Manna, Abhinav Saha, Nirmalendu Biswas and Koushik Ghosh

The purpose of this study is to investigate the influence of enclosure shape on magnetohydrodynamic (MHD) nanofluidic flow, heat transfer and irreversibility in square, trapezoidal

Abstract

Purpose

The purpose of this study is to investigate the influence of enclosure shape on magnetohydrodynamic (MHD) nanofluidic flow, heat transfer and irreversibility in square, trapezoidal and triangular thermal systems under fluid volume constraints, with the aim of optimizing thermal behavior in diverse applications.

Design/methodology/approach

The study uses numerical simulations based on a finite element-based technique to analyze the effects of the Rayleigh number (Ra), Hartmann number (Ha), magnetic field orientation (γ) and nanoparticle concentration (ζ) on heat transfer characteristics and thermodynamic entropy production.

Findings

The key findings reveal that the geometrical design significantly influences fluid velocity, heat transfer and irreversibility. Trapezoidal thermal systems outperform square systems, while triangular systems achieve optimal enhancement. Nanoparticle concentration enhances heat transfer and flow strength at higher Rayleigh numbers. The magnetic field intensity has a significant impact on fluid flow and heat transport in natural convection, with higher Hartmann numbers resulting in reduced flow strength and heat transfer. The study also highlights the influence of various parameters on thermodynamic entropy production.

Research limitations/implications

Further research can explore additional geometries, parameters and boundary conditions to expand the understanding of enclosure shape effects on MHD nanofluidic flow and heat transfer. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This study provides valuable insights into the impact of enclosure shape on heat transfer performance in MHD nanofluid flow systems. The findings contribute to the optimization of thermal behavior in applications such as electronics cooling and energy systems. The comparison of different enclosure shapes and the analysis of thermodynamic entropy production add novelty to the study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2017

Mahmoud Salari, Mohammad Mehdi Rashidi, Emad Hasani Malekshah and Masoud Hasani Malekshah

Because the local Re numbers, ratio of inertia to viscous forces, are not same at different regions of the enclosures, the present study aims to deal with the influences of using…

Abstract

Purpose

Because the local Re numbers, ratio of inertia to viscous forces, are not same at different regions of the enclosures, the present study aims to deal with the influences of using the turbulent/transition models on numerical results of the natural convection and flow field within a trapezoidal enclosure.

Design/methodology/approach

The three-dimensional (3D) trapezoidal enclosure with different inclined side walls of 75, 90 and 105 degrees are considered, where the side walls are heated and cooled at Ra = 1.5 × 109 for all cases. The turbulent models of the k-ε-RNG, k- ω-shear-stress transport (SST) and the newly developed transition/turbulent model of Reθ-γ-transition SST are utilized to analyze the fluid flow and heat transfer characteristics within the enclosure and compared their results with validated results.

Findings

Comprehensive comparisons have been carried out for all cases in terms of flow and temperature fields, as well as turbulent quantities, such as turbulent kinetic energy and turbulent viscosity ratio. Furthermore, the velocity and thermal boundary layers have been investigated, and the approximate transition regions for laminar, transitional and turbulent regimes have been determined. Finally, the heat transfer coefficient and skin friction coefficient values have been presented and compared in terms of different turbulent models and configurations. The results show that the transition/turbulence model has better prediction for the flow and heat fields than fully turbulent models, especially for local parameters for all abovementioned governing parameters.

Originality value

The originality of this work is to analyze the 3D turbulent/transitional natural convection with different turbulence/transition models in a trapezoidal enclosure.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2018

Alireza Rahimi, Ali Dehghan Saee, Abbas Kasaeipoor and Emad Hasani Malekshah

The purpose of this paper is to carry out a comprehensive review of some latest studies devoted to natural convection phenomenon in the enclosures because of its significant…

1116

Abstract

Purpose

The purpose of this paper is to carry out a comprehensive review of some latest studies devoted to natural convection phenomenon in the enclosures because of its significant industrial applications.

Design/methodology/approach

Geometries of the enclosures have considerable influences on the heat transfer which will be important in energy consumption. The most useful geometries in engineering fields are treated in this literature, and their effects on the fluid flow and heat transfer are presented.

Findings

A great variety of geometries included with different physical and thermal boundary conditions, heat sources and fluid/nanofluid media are analyzed. Moreover, the results of different types of methods including experimental, analytical and numerical are obtained. Different natures of natural convection phenomenon including laminar, steady-state and transient, turbulent are covered. Overall, the present review enhances the insight of researchers into choosing the best geometry for thermal process.

Originality/value

A comprehensive review on the most practical geometries in the industrial application is performed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 November 2020

Leo Lukose and Tanmay Basak

This paper aims to investigate the role of shapes of containers (nine different containers) on entropy generation minimization involving identical cross-sectional area (1 sq…

Abstract

Purpose

This paper aims to investigate the role of shapes of containers (nine different containers) on entropy generation minimization involving identical cross-sectional area (1 sq. unit) in the presence of identical heating (isothermal). The nine containers are categorized into three classes based on their geometric similarities (Class 1: square, tilted square and parallelogram; Class 2: trapezoidal type 1, trapezoidal type 2 and triangular; Class 3: convex, concave and curved triangular).

Design/methodology/approach

Galerkin finite element method is used to solve the governing equations for a representative fluid (engine oil: Pr = 155) at Ra = 103–105. In addition, finite element method is used to solve the streamfunction equation and evaluate the entropy generation terms (Sψ and Sθ). Average Nusselt number ( Nub¯) and average dimensionless spatial temperature ( θ^) are also evaluated via the finite element basis sets.

Findings

Based on larger Nub¯, larger θ^ and optimal Stotal values, containers from each class are preferred as follows: Class 1: parallelogrammic and square, Class 2: trapezoidal type 1 and Class 3: convex (larger θ^, optimum Stotal) and concave (larger Nub¯). Containers with curved walls lead to enhance the thermal performance or efficiency of convection processes.

Practical implications

Comparison of entropy generation, intensity of thermal mixing ( θ^) and average heat transfer rate give a clear picture for choosing the appropriate containers for processing of fluids at various ranges of Ra. The results based on this study may be useful to select a container (belonging to a specific class or containers with curved or plane walls), which can give optimal thermal performance from the given heat input, thereby leading to energy savings.

Originality/value

This study depicts that entropy generation associated with the convection process can be reduced via altering the shapes of containers to improve the thermal performance or efficiency for processing of identical mass with identical heat input. The comparative study of nine containers elucidates that the values of local maxima of Sψ (Sψ,max), Sθ (Sθ,max) and magnitude of Stotal vary with change in shapes of the containers (Classes 1–3) at fixed Pr and Ra. Such a comparative study based on entropy generation minimization on optimal heating during convection of fluid is yet to appear in the literature. The outcome of this study depicts that containers with curved walls are instrumental to optimize entropy generation with reasonable thermal processing rates.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 June 2017

T. Javed, Z. Mehmood and Ioan Pop

The purpose of this paper is to analyze numerical results for heat transfer through mixed convection in an incompressible steady lid-driven fluid flow inside a trapezoidal cavity…

Abstract

Purpose

The purpose of this paper is to analyze numerical results for heat transfer through mixed convection in an incompressible steady lid-driven fluid flow inside a trapezoidal cavity in the presence of a uniform magnetic field.

Design/methodology/approach

In this study, the authors have considered three different cases, in which left and right walls of the cavity are tilted at different angles of 0, 30 and 45 degrees, respectively. Both left and right side walls of the cavity are taken cold and the upper wall is insulated and assumed moving with constant speed, whereas the bottom wall is considered to be heated uniformly/non-uniformly. To eliminate pressure term, penalty method is applied to governing Navier–Stokes’ equations. The reduced equations are solved by Galerkin weighted residual technique of finite element method. Grid-independent results are obtained and shown in terms of plots for streamlines, isotherms, Nusselt number and average Nusselt number for a wide range of flow parameters, including Rayleigh numbers Ra, Prandtl number Pr and Hartman number Ha.

Findings

It has been observed that the effects of moving lid become negligible for Ra = 100,000, whereas increasing Rayleigh number results in stronger streamline circulation and convection dominant effects inside the enclosure. Local Nusselt number Nu along the bottom wall is observed to be maximum at edges and it reduces while moving toward the center from edges, and attains minimum value at the center of the bottom wall.

Research limitations/implications

The problem is modeled for laminar and incompressible flow, induced magnetic field has been considered negligibly small and local thermal equilibrium has been assumed.

Originality/value

In this investigation, the authors have presented new and original results for mixed convection flow inside a lid-driven trapezoidal cavity under the influence of a magnetic field. Hence, this study would be important for the researchers working in the area of heat transfer in cavity flows involving magnetic effects to become familiar with the flow behavior and properties.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 November 2019

Leo Lukose and Tanmay Basak

The purpose of this paper is to study thermal (natural) convection in nine different containers involving the same area (area= 1 sq. unit) and identical heat input at the bottom…

Abstract

Purpose

The purpose of this paper is to study thermal (natural) convection in nine different containers involving the same area (area= 1 sq. unit) and identical heat input at the bottom wall (isothermal/sinusoidal heating). Containers are categorized into three classes based on geometric configurations [Class 1 (square, tilted square and parallelogram), Class 2 (trapezoidal type 1, trapezoidal type 2 and triangle) and Class 3 (convex, concave and triangle with curved hypotenuse)].

Design/methodology/approach

The governing equations are solved by using the Galerkin finite element method for various processing fluids (Pr = 0.025 and 155) and Rayleigh numbers (103 ≤ Ra ≤ 105) involving nine different containers. Finite element-based heat flow visualization via heatlines has been adopted to study heat distribution at various sections. Average Nusselt number at the bottom wall ( Nub¯) and spatially average temperature (θ^) have also been calculated based on finite element basis functions.

Findings

Based on enhanced heating criteria (higher Nub¯ and higher θ^), the containers are preferred as follows, Class 1: square and parallelogram, Class 2: trapezoidal type 1 and trapezoidal type 2 and Class 3: convex (higher θ^) and concave (higher Nub¯).

Practical implications

The comparison of heat flow distributions and isotherms in nine containers gives a clear perspective for choosing appropriate containers at various process parameters (Pr and Ra). The results for current work may be useful to obtain enhancement of the thermal processing rate in various process industries.

Originality/value

Heatlines provide a complete understanding of heat flow path and heat distribution within nine containers. Various cold zones and thermal mixing zones have been highlighted and these zones are found to be altered with various shapes of containers. The importance of containers with curved walls for enhanced thermal processing rate is clearly established.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 August 2022

Dipak Kumar Mandal, Nirmalendu Biswas, Nirmal K. Manna, Rama Subba Reddy Gorla and Ali J. Chamkha

This study aims to numerically examine the influence of various geometric parameters of a novel W-shaped porous cavity undergoing hybrid nanofluid-based magnetohydrodynamic mixed…

295

Abstract

Purpose

This study aims to numerically examine the influence of various geometric parameters of a novel W-shaped porous cavity undergoing hybrid nanofluid-based magnetohydrodynamic mixed convection. The W-shaped cavity is modified from the classical trapezoidal cavity by constructing a triangular shape at its bottom. This cavity is isothermally active at the bottom, with different numbers and heights of the triangular peak (or undulation). The heated hybrid nanofluid (Cu–Al2O3–H2O) flow is cooled through the translating top wall. Inclined sidewalls are thermally insulated. To compare the impacts of change in geometric parameters, a square cavity under similar boundary conditions is also simulated. This study is carried out systematically addressing the various influences from a range of parameters like side angles (γ), number (m) and height (λ) of the bottom undulation, Reynolds number (Re), Richardson number (Ri), Darcy number (Da), Hartmann number (Ha), hybrid nanoparticles volume fraction (φ) on the overall thermal performance of the cavity.

Design/methodology/approach

Applying the finite volume approach, the transport equations involving multiphysical conditions like porous substance, hybrid nanofluid, magnetic field and shearing force are solved numerically by using a written FORTRAN-based code following the SIMPLE algorithm. The algebraic equations are solved over all the control volumes in an iterative process using the alternate direction implicit scheme and the tri-diagonal matrix algorithm. The converged solution of the iterative process is obtained when the relative error levels satisfy the convergence criterion of 10–8 and 10–10 for the maximum residuals and the mass defect, respectively.

Findings

It is revealed that an increase in the bottom undulation height always improves the thermal energy transfer despite the reduction of fluid volume. Thermal energy transfer significantly depends on the heating and cooling surface lengths, fluid volume in the cavity and the magnitude of the bottom undulation height of the W-shaped cavity. With the increase in bottom undulation height, effective heating length increases by ∼28%, which leads to a ∼15% reduction in the effective volume of the working fluid and a gain in heat transfer by ∼56.48%. In general, the overall thermal energy transport is improved by increasing Re, Ri and Da; whereas it is suppressed by increasing Ha.

Research limitations/implications

There are many opportunities for future research experimentally or numerically, considering different curvature effects, orientations of the geometry, working fluids, boundary conditions, etc. Furthermore, this study could be extended by considering unsteady flow or turbulent flow.

Practical implications

In many modern systems/processes pertaining to materials processing, continuous casting, food processing, chemical reactors, biomedical applications, etc. fine control in the transport process is a major concern. The findings of this analysis can effectively be useful for other applications for getting more control features in terms of achieving the operational objectives. The approach of the system analysis (considering geometrical size parameters to delve into the underlying transport physics) and the obtained simulated results presented in the work can usefully be applicable to similar thermal systems/devices such as materials processing, thermal mixing, chemical reactors, heat exchangers, etc.

Originality/value

From the well-documented and vast pool of literature survey, it is understood that there exists no such investigation on the considered geometry and study. This study contributes a lot to understanding magnetic field moderated thermofluid flow of a hybrid nanofluid in a porous medium filled W-shaped cavity, in consideration of different geometrical shape parameters (undulation peak numbers at bottom wall, peak heights, side angles and heating and cooling length). Findings brought by this study provide great insights into the design and operation under various ranges of multiphysical thermofluid-flow processing phenomena.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 May 2019

Nikita Gibanov and Mikhail A. Sheremet

The purpose of this paper is to investigate natural convective heat transfer in a cubical cavity with the heat source of a trapezoidal form having a constant temperature.

Abstract

Purpose

The purpose of this paper is to investigate natural convective heat transfer in a cubical cavity with the heat source of a trapezoidal form having a constant temperature.

Design/methodology/approach

The domain of interest is a cubical cavity with two isothermal opposite vertical walls, while other walls are adiabatic. A discrete heater of a trapezoidal shape is located at the bottom wall of the cavity. Governing equations formulated in dimensionless vector potential functions, vorticity vector and temperature with corresponding initial and boundary conditions have been solved numerically using a developed computational code based on the finite difference method.

Findings

The results show that the variation of geometric parameters, such as height, length and size of the local heater, significantly influences the evolution of a temperature field and fluid flow inside the enclosure. The effects of Rayleigh number and time on streamlines, isotherms and average Nusselt number have been studied.

Originality/value

The originality of this work is to explore three-dimensional (3D) natural convection in a cubical cavity with a local heat source of trapezoidal shape, to analyze the effects of heater geometric parameters and to compare obtained 3D data with two-dimensional results.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 263