Search results

1 – 10 of 287
Article
Publication date: 9 March 2015

Shibo Wang, Bo Cao and Bing Teng

The purpose of this paper is to investigate the effect of hexagonal boron nitride (h-BN) and poly (phenyl p-hydroxybenzoate) (PHBA) on improving the torsional tribological…

Abstract

Purpose

The purpose of this paper is to investigate the effect of hexagonal boron nitride (h-BN) and poly (phenyl p-hydroxybenzoate) (PHBA) on improving the torsional tribological behavior of polytetrafluoroethylene (PTFE).

Design/methodology/approach

This paper investigates the torsional tribological behavior of PTFE composites filled with h-BN and PHBA under different angular displacements with a plane-on-plane torsional friction tester. The worn surface of PTFE composites was investigated by using a scanning electron microscope.

Findings

The shape of T–Θ curves of PTFE composites was influenced by both content fillers and torsional angule. The material with a higher coefficient of sliding friction exhibited the larger torsional angle under which the torsional regime transited from a partial slip to a gross slip. PTFE composites filled with 20 weight per cent PHBA and 10 weight per cent h-BN showed the best anti-wear properties. The specific wear rate of composites exhibits a negative correlation with material hardness. The wear volume loss presents a positive correlation with friction dissipation energy. The specific wear rate of all composites decreased with increasing torsional angle. The dominant wear mechanism of pure PTFE was adhesive wear. The slight plastic flow and plowing occurred on the worn surfaces of PTFE composites because of the higher hardness of composites and the lubrication of h-BN particles with layer crystal structure.

Originality/value

This paper put forward a kind of PTFE composite with low torsional wear rate, which can be used in the sliding slewing bearing or the center plate of a bogie.

Details

Industrial Lubrication and Tribology, vol. 67 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 April 2020

Teng Xiao, Daosheng Wen, Shouren Wang, Mingyuan Zhang, Beibei Kong and Qiqi Yu

This paper aims to investigate the fretting wear mechanism of an Al-Li alloy at room temperature, the tangential fretting wear tests were carried out.

Abstract

Purpose

This paper aims to investigate the fretting wear mechanism of an Al-Li alloy at room temperature, the tangential fretting wear tests were carried out.

Design/methodology/approach

The effects of displacement amplitude and fretting frequency on the tangential fretting wear characteristics were mainly investigated. The experimental data obtained are analyzed and compared.

Findings

The results indicated that the fretting friction coefficient increased with the increase of displacement amplitude. As the displacement amplitude increased, the wear scar morphology changed significantly, mainly in terms of delamination debris and furrow scratches. The wear mechanism changed from initial mild wear to more severe oxidative wear, adhesive wear and abrasive wear.

Originality/value

This paper extends the knowledge into mechanical tight connections. The conclusions can provide theoretical guidance for the fretting of mechanical tight connections in the field of automotive lightweight and aerospace.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0490/

Details

Industrial Lubrication and Tribology, vol. 72 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 June 2019

Xinbo Wang, Zhongwei Yin, Hulin Li, Gengyuan Gao and Jun Cao

The purpose of this paper is to study the frictional behaviors of CuAl10Fe3 journal bearings sliding against chromium electroplated 42CrMo shafts and diamond-like carbon-coated…

Abstract

Purpose

The purpose of this paper is to study the frictional behaviors of CuAl10Fe3 journal bearings sliding against chromium electroplated 42CrMo shafts and diamond-like carbon-coated 42CrMo shafts, respectively, under two different conditions and to compare the two kinds of friction pairs.

Design/methodology/approach

All journal bearing samples underwent 24 h running-in and repeatability verification. Then, the journal bearing friction experiments were carried out under two different conditions. After testing, the torques, friction coefficients, power consumptions and other parameters were obtained.

Findings

The pair of CuAl10Fe3 journal bearing and diamond-like carbon–coated shaft could drive greater load to start up than the pair of CuAl10Fe3 journal bearing and chromium electroplated 42CrMo shaft, but it had greater power consumption during the steady running period under the identical condition. With the changing of specific pressure or rotational speed, the friction coefficients had different variations. The frictional oscillations appeared at 32 rotations per minute under heavy loads for both kinds of pairs, the oscillation frequencies were equal to rotational frequency of the test shaft and the oscillation amplitude for diamond-like carbon coating was much greater.

Originality/value

These results have guiding significance for practical industrial applications.

Details

Industrial Lubrication and Tribology, vol. 71 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 April 2023

Yulei Yang, Jimin Xu and Yi Liang

Quantitative fretting wear prediction is of practical significance for industrial components. This study aims to establish a fretting wear model considering the formation of…

Abstract

Purpose

Quantitative fretting wear prediction is of practical significance for industrial components. This study aims to establish a fretting wear model considering the formation of tribolayers and provide better fretting wear prediction.

Design/methodology/approach

Based on the characteristics for the formation of tribolayers, the ratio of fretting amplitude to nominal contact area length in the fretting direction is used to characterize their formation and contribution to the wear volume. The wear volume is then associated with the product of the friction energy and the ratio of fretting amplitude to nominal contact area length.

Findings

Better prediction in the wear volume can be achieved with the proposed fretting wear model by taking the formation of tribolayers into consideration.

Originality/value

The contribution of the formation of tribolayers to the wear volume is considered in the model and better prediction can be achieved.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2023-0004/

Details

Industrial Lubrication and Tribology, vol. 75 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 March 2020

Zhaojie Meng, Yunxia Wang, Xiaocui Xin, Hao Liu, Yunfeng Yan and Fengyuan Yan

The purpose of this study is to examine the fretting wear property of ultra-high molecular weight polyethylene (UHMWPE)-based composites reinforced by different content of…

Abstract

Purpose

The purpose of this study is to examine the fretting wear property of ultra-high molecular weight polyethylene (UHMWPE)-based composites reinforced by different content of attapulgite.

Design/methodology/approach

A series of composites were prepared by a hot-pressing method. Fretting tests were carried out using an SRV-IV oscillating reciprocating friction wear tester with a load of 10 N and a frequency of 100 Hz. The morphology of the fracture structure and the worn surface was observed by field-emission scanning electron microscopy, X-ray diffraction and a non-contact three dimensional surface profiler.

Findings

With the addition of attapulgite, the microstructure of the composites become more regular, and their heat resistance improved. Furthermore, the friction coefficient and the specific wear rate of the composites with lower filler content reduced compared with that of neat UHMWPE, and the optimum filler content is 1 per cent.

Originality/value

The study investigated the fretting resistance mechanism of the attapulgite in the UHMWPE matrix. The results could help to provide some experimental evidence for the broader application of silicates on the fretting wear resistance of polymers.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2019-0420/

Details

Industrial Lubrication and Tribology, vol. 72 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 August 2021

Ziao Huang, Xiaoshan Liu, Guoqiu He, Zhiqiang Zhou, Bin Ge, Peiwen Le, Jiaqi Pan and Xiaojun Xu

This study aims to understand the multiaxial fretting fatigue, wear and fracture characteristics of 35CrMoA steel under the elliptical loading path.

Abstract

Purpose

This study aims to understand the multiaxial fretting fatigue, wear and fracture characteristics of 35CrMoA steel under the elliptical loading path.

Design/methodology/approach

By keeping the contact pressure and torsional shear cyclic stress amplitude unchanged; the axial cyclic stress amplitude varied from 650 MPa to 850 MPa. The fretting fatigue test was carried out on MTS809 testing machine, and the axial cyclic strain response and fatigue life of the material were analyzed. The fretting zone and fracture surface morphology were observed by scanning electron microscope. The composition of wear debris was detected by energy dispersive X-ray spectrometer.

Findings

In this study, with the increase of axial stress amplitude, 35CrMoA steel will be continuously softened, and the cyclic softening degree increases. The fretting fatigue life decreases unevenly. The fretting scars in the stick region are elongated in the axial direction. The area of fracture crack propagation zone decreases. In addition, the results indicate that wear debris in the slip region is spherical and has higher oxygen content.

Originality/value

There were few literatures about the multiaxial fretting fatigue behavior of 35CrMoA steel, and most scholars focused on the contact pressure. This paper reveals the effect of axial cyclic stress on fretting fatigue and wear of 35CrMoA steel under the elliptical loading path.

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 November 2009

George K. Stylios

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1103

Abstract

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 21 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 29 June 2022

Fan Lin, Jianshe Peng, Shifeng Xue and Jie Yang

In this paper, the authors aim to propose an effective method to indirectly determine nonlinear elastic shear stress-strain constitutive relationships for nonlinear elasticity…

Abstract

Purpose

In this paper, the authors aim to propose an effective method to indirectly determine nonlinear elastic shear stress-strain constitutive relationships for nonlinear elasticity materials, and then study the nonlinear free torsional vibration of Al–1%Si shaft.

Design/methodology/approach

In this study the authors use BoxLucas1 model to fit the determined-experimentally nonlinear elastic normal stress–strain constitutive relationship curve of Al–1%Si, a typical case of isotropic nonlinear elasticity materials, and then derive its nonlinear shear stress-strain constitutive relationships based on the fitting constitutive relationships and general equations of plane-stress and plane-strain transformation. Hamilton’s principle is utilized to gain nonlinear governing equation and boundary conditions for free torsional vibration of Al–1%Si shaft. Differential quadrature method and an iterative algorithm are employed to numerically solve the gained equations of motion.

Findings

The effect of four variables, namely dimensionless fundamental vibration amplitude ϑmax, radius α and length β, and nonlinear-elasticity intensity factor δ, on frequencies and mode shapes of the shafts is obtained. Numerical results are in good agreement with reference solutions, and show that compared with linearly elastic shear stress-strain constitutive relationships of the shafts made of the nonlinear elasticity materials, its actual nonlinearly elastic shear stress-strain constitutive relationships have smaller torsion frequencies. In addition, but β having opposite hardening effect, the rest of the four variables have softening effect on nonlinearly elastic torsion frequencies. Eventually, taking into account nonlinearly elastic shear stress-strain constitutive relationships, changes of the four factors, i.e. ϑmax, α, β and δ, cause inflation and deflation behaviors of mode shapes in nonlinear free torsional vibration.

Originality/value

The study could provide a reference for indirectly determining nonlinear elastic shear stress-strain constitutive relationships for nonlinear elasticity materials and for structure design of torsional shaft made of nonlinear elasticity materials.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 August 2017

Gregor Lux, Marco Ulrich, Thomas Baker, Martin Hutterer and Gunther Reinhart

Articulated robots are widely used in industrial applications owing to their high repeatability accuracy. In terms of new applications such as robot-based inspection systems, the…

Abstract

Purpose

Articulated robots are widely used in industrial applications owing to their high repeatability accuracy. In terms of new applications such as robot-based inspection systems, the limitation is a lack of pose accuracy. Mostly, robot calibration approaches are used for the improvement of the pose accuracy. Such approaches however require a profound understanding of the determining effects. This paper aims to provide a non-destructive analysis method for the identification and characterisation of non-geometric accuracy effects in relation to the kinematic structure for the purpose of an accuracy enhancement.

Design/methodology/approach

The analysis is realised by a non-destructive method for rotational, uncoupled robot axes with the use of a 3D lasertracker. For each robot axis, the lasertracker position data for multiple reflectors are merged with the joint angles given by the robot controller. Based on this, the joint characteristics are determined. Furthermore, the influence of the kinematic structure is investigated.

Findings

This paper analyses the influence of the kinematic structure and non-geometric effects on the pose accuracy of standard articulated robots. The provided method is shown for two different industrial robots and presented effects incorporate tilting of the robot, torsional joint stiffness, hysteresis, influence of counter balance systems, as well as wear and damage.

Practical implications

Based on these results, an improved robot model for a better match between the mathematical description and the real robot system can be achieved by characterising non-geometric effects. In addition, wear and damages can be identified without a disassembly of the system.

Originality/value

The presented method for the analysis of non-geometric effects can be used in general for rotational, uncoupled robot axes. Furthermore, the investigated accuracy influencing effects can be taken into account to realise high-accuracy applications.

Details

Industrial Robot: An International Journal, vol. 44 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 287