Search results

1 – 10 of 570
Article
Publication date: 24 August 2021

Ziao Huang, Xiaoshan Liu, Guoqiu He, Zhiqiang Zhou, Bin Ge, Peiwen Le, Jiaqi Pan and Xiaojun Xu

This study aims to understand the multiaxial fretting fatigue, wear and fracture characteristics of 35CrMoA steel under the elliptical loading path.

Abstract

Purpose

This study aims to understand the multiaxial fretting fatigue, wear and fracture characteristics of 35CrMoA steel under the elliptical loading path.

Design/methodology/approach

By keeping the contact pressure and torsional shear cyclic stress amplitude unchanged; the axial cyclic stress amplitude varied from 650 MPa to 850 MPa. The fretting fatigue test was carried out on MTS809 testing machine, and the axial cyclic strain response and fatigue life of the material were analyzed. The fretting zone and fracture surface morphology were observed by scanning electron microscope. The composition of wear debris was detected by energy dispersive X-ray spectrometer.

Findings

In this study, with the increase of axial stress amplitude, 35CrMoA steel will be continuously softened, and the cyclic softening degree increases. The fretting fatigue life decreases unevenly. The fretting scars in the stick region are elongated in the axial direction. The area of fracture crack propagation zone decreases. In addition, the results indicate that wear debris in the slip region is spherical and has higher oxygen content.

Originality/value

There were few literatures about the multiaxial fretting fatigue behavior of 35CrMoA steel, and most scholars focused on the contact pressure. This paper reveals the effect of axial cyclic stress on fretting fatigue and wear of 35CrMoA steel under the elliptical loading path.

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 November 2019

Vijay Kumar Polimeru and Arghadeep Laskar

The purpose of this study is to evaluate the effectiveness of two-dimensional (2D) cyclic softened membrane model (CSMM)-based non-linear finite element (NLFE) model in predicting…

Abstract

Purpose

The purpose of this study is to evaluate the effectiveness of two-dimensional (2D) cyclic softened membrane model (CSMM)-based non-linear finite element (NLFE) model in predicting the complete non-linear response of shear critical bridge piers (with walls having aspect ratios greater than 2.5) under combined axial and reversed cyclic uniaxial bending loads. The effectiveness of the 2D CSMM-based NLFE model has been compared with the widely used one-dimensional (1D) fiber-based NLFE models.

Design/methodology/approach

Three reinforced concrete (RC) hollow rectangular bridge piers tested under reversed cyclic uniaxial bending and sustained axial loads at the National Centre for Research on Earthquake Engineering (NCREE) Taiwan have been simulated using both 1D and 2D models in the present study. The non-linear behavior of the bridge piers has been studied through various parameters such as hysteretic loops, energy dissipation, residual drift, yield load and corresponding drift, peak load and corresponding drift, ultimate loads, ductility, specimen stiffness and critical strains in concrete and steel. The results obtained from CSMM-based NLFE model have been critically compared with the test results and results obtained from the 1D fiber-based NLFE models.

Findings

It has been observed from the analysis results that both 1D and 2D simulation models performed well in predicting the response of flexure critical bridge pier. However, in the case of shear critical bridge piers, predictions from 2D CSMM-based NLFE simulation model are more accurate. It has, thus, been concluded that CSMM-based NLFE model is more accurate and robust to simulate the complete non-linear behavior of shear critical RC hollow rectangular bridge piers.

Originality/value

In this study, a novel attempt has been made to provide a rational and robust FE model for analyzing shear critical hollow RC bridge piers (with walls having aspect ratios greater than 2.5).

Details

Engineering Computations, vol. 37 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 May 2018

Riccardo Fincato and Seiichiro Tsutsumi

Many practical problems in engineering require fast, accurate numerical results. In particular, in cyclic plasticity or fatigue simulations, the high number of loading cycles…

126

Abstract

Purpose

Many practical problems in engineering require fast, accurate numerical results. In particular, in cyclic plasticity or fatigue simulations, the high number of loading cycles increases the computation effort and time. The purpose of this study is to show that the return mapping technique in the framework of unconventional plasticity theories is a good compromise between efficiency and accuracy in finite element analyses.

Design/methodology/approach

The accuracy of the closest point projection method and the cutting plane method implementations for the subloading surface model are discussed under different loading conditions by analyzing the error as a function of the input step size and the efficiency of the algorithms.

Findings

Monotonic tests show that the two different implicit integration schemes have the same accuracy and are in good agreement with the solution obtained using an explicit forward Euler scheme, even for large input steps. However, the closest point projection method seems to describe better the evolution of the similarity centre in the cyclic loading analyses.

Practical implications

The purpose of this work is to show two alternative implicit integration schemes of the extended subloading surface method for metallic materials. The backward Euler integrations can guarantee a good description of the material behaviour and, at the same time, reduce the computational cost. This aspect is particularly important in the field of low or high cycle fatigue, because of the large number of cycles involved.

Originality/value

A detailed description of both the cutting plane and closest point projection methods is offered in this work. In particular, the two integrations schemes are compared in terms of accuracy and computation time for monotonic and cyclic loading tests.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 November 2018

Aref Mehditabar and Gholam H. Rahimi

This study aims to explain the characterization of cyclic behavior of a tube made of functionally graded material (FGM) under different combinations of internal pressure and cyclic

Abstract

Purpose

This study aims to explain the characterization of cyclic behavior of a tube made of functionally graded material (FGM) under different combinations of internal pressure and cyclic through-thickness temperature gradients.

Design/methodology/approach

The normality rule, nonlinear kinematic hardening Chaboche model and Von Mises yield criterion were used to model the constitutive behavior of an FG tube in the incremental form. The material properties and hardening parameters of the Chaboche model vary according to the power-law function in the radial direction. The backward Euler integration scheme combined with return mapping algorithm which relies on the solution of a nonlinear equation performs the numerical procedure. The algorithm is implemented within the user subroutine UMAT in ABAQUS/standard.

Findings

The published works on FG components considering only the mechanical and physical properties as a function of spatial coordinate and nonlinear kinematic hardening parameters have not been considered to be changed continuously from one surface to another. Motivated by this, the present paper has deliberately been targeted to tackle this kind of problem to simulate the cyclic behavior of an FG tube as accurately as possible. In addition, to classify various behaviors the FG tube under cyclic thermomechanical loadings, Bree’s interaction diagram as an essential tool in designing of the FG pressure vessels in many engineering sectors is presented.

Originality/value

Provides a detailed description of the FG parameters of Chaboche kinematic hardening parameters in the adopted constitutive equations. In this paper, the significant effects of internal pressure values, kinematic hardening models and also FG inhomogeneity index related to the hardening rule parameters on plastic deformation of the FG tube are illustrated. Finally, the various cyclic behaviors of the FG tube under different combinations of thermomechanical loading are fully explored.

Details

Engineering Computations, vol. 36 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 May 2022

Heng Xiao, Zi-Tao Li, Lin Zhan and Si-Yu Wang

The purpose of this study is to show how gradual strength degradation of metal beams under cyclic bending up to fatigue failure is simulated based on a new elastoplasticity model…

Abstract

Purpose

The purpose of this study is to show how gradual strength degradation of metal beams under cyclic bending up to fatigue failure is simulated based on a new elastoplasticity model free of any yield criterion.

Design/methodology/approach

A new approach is proposed toward accurately and explicitly prescribing evolution of non-uniform stress distribution on beam cross-section under cyclic bending and, as such, gradual degradation of the bending strength can be directly determined.

Findings

Explicit results for the bending response in a whole cyclic process up to fatigue failure are obtained and the fatigue characteristic curve is for the first time simulated directly between the curvature amplitude and the cycle number to failure.

Originality/value

First, explicit and accurate determination of the non-uniform stress distribution on beam cross-section is achieved with asymptotic softening effects. Second, degradation of the bending strength can be directly deduced cycle by cycle. Finally, the relationship between the bending moment and the curvature is calculated using new and efficient numerical algorithms, thus bypassing usual time-consuming calculations with finite element procedures. Numerical results are presented and in good agreement with experimental data.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 January 2018

Haraprasad Roy, Abhinav Khare, Saurabh Chandraker and J.K. Dutt

High-speed rotor subjected to cyclic stress during operation may cause fatigue failure. Thus, the design of a rotor-shaft should involve the fatigue analysis for predicting safe…

Abstract

Purpose

High-speed rotor subjected to cyclic stress during operation may cause fatigue failure. Thus, the design of a rotor-shaft should involve the fatigue analysis for predicting safe life.

Design/methodology/approach

A damped rotor shaft with a centrally mounted disc, which is simulated as steam turbine rotor, is considered for fatigue analysis. The shaft is subjected to thermal load and axial torque. It is supported by two orthotropic flexible bearings at its two extreme ends. The bearings are modelled with two-element Voigt model along each orthogonal direction to consider the elastic damped behaviour. Finite element modelling is done through Rayleigh beam theory, where each element is also considered as a Voigt model. The mathematical model involves effect of external axial torque, softening and compressive action of the shaft due to thermal load by the high temperature steam.

Findings

This paper attempts to find dynamic stresses in a viscoelastic rotor-shaft subject to combined bending and torsional loading and is exposed to thermal environment during operation. The dynamic stress is then used to determine fatigue and also the life of rotors.

Research limitations/implications

Internal damping plays an important role in deciding dynamic behaviour of rotor shaft systems. Because of this, the rotor shaft becomes unstable after a certain spin speed. Thus, the design of the rotor based on fatigue analysis is limited to the stable zone.

Practical implications

For this purpose, equations of whirl motion of a viscoelastic rotor-shaft are first obtained after discretizing the continuum with finite beam elements and then the time domain solution of rotor displacement is used to find the bending stress and shear stress at various locations of the rotor. Location for the maximum stress decides the failure point. Safe rotor dimensions have been predicted by comparing dynamic stresses with the Soderberg diagram.

Originality/value

Design of rotor for safe life operation and prediction of stability could serve a good reference for designers.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 February 1986

H. Burlet and G. Cailletaud

A formulation of non‐linear kinematic hardening in plasticity is given, with a short description of the model properties under cyclic loading. A resolution algorithm based on the…

Abstract

A formulation of non‐linear kinematic hardening in plasticity is given, with a short description of the model properties under cyclic loading. A resolution algorithm based on the initial stress method is implemented in a two‐dimensional finite element code (ZEBULON). The procedure is tested on examples including mechanical and thermal loading. Some remarks are made on the maximum increment size, the relative efficiency of ‘radial return’ and ‘secant stiffness method’ is discussed. Finally, the possibilities of the model concerning ratchetting, cyclic hardening and softening are shown.

Details

Engineering Computations, vol. 3 no. 2
Type: Research Article
ISSN: 0264-4401

Open Access
Article
Publication date: 23 May 2022

Yangsheng Ye, Degou Cai, Lin Geng, Hongye Yan, Junkai Yao and Feng Chen

This study aims to propose a semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the high-speed railway (HSR) subgrade under…

Abstract

Purpose

This study aims to propose a semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the high-speed railway (HSR) subgrade under cyclic load.

Design/methodology/approach

According to the basic framework of critical state soil mechanics and in view of the characteristics of the coarse-grained soil filler for the HSR subgrade to bear the train vibration load repeatedly for a long time, the hyperbolic empirical relationship between particle breakage and plastic work was derived. Considering the influence of cyclic vibration time and stress ratio, the particle breakage correction function of coarse-grained soil filler for the HSR subgrade under cyclic load was proposed. According to the classical theory of plastic mechanics, the shearing dilatation equation of the coarse-grained soil filler for the HSR subgrade considering particle breakage was modified and obtained. A semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the HSR subgrade under cyclic load was further established. The backward Euler method was used to discretize the constitutive equation, build a numerical algorithm of “elastic prediction and plastic modification” and make a secondary development of the program to solve the cyclic compaction model.

Findings

Through the comparison with the result of laboratory triaxial test under the cyclic loading of coarse-grained soil filler for the HSR subgrade, the accuracy and applicability of the cyclic compaction model were verified. Results show that the model can accurately predict the cumulative deformation characteristics of coarse-grained soil filler for the HSR subgrade under the train vibration loading repeatedly for a long time. It considers the effects of particle breakage and stress ratio, which can be used to calculate and analyze the stress and deformation evolution law of the subgrade structure for HSR.

Originality/value

The research can provide a simple and practical method for calculating deformation of railway under cyclic loading.

Article
Publication date: 6 July 2022

Marya Alraqad, Rabab Allouzi and Amer Alkloub

Short columns can cause serious damage when subjected to an earthquake due to their high stiffness with low ductility. These columns can be exposed to multidirectional shear…

60

Abstract

Purpose

Short columns can cause serious damage when subjected to an earthquake due to their high stiffness with low ductility. These columns can be exposed to multidirectional shear forces, which encouraged this study to investigate the behavior of structural short columns under bi-directional shear.

Design/methodology/approach

Finite element analysis (FEA) using ABAQUS is conducted and calibrated based on experimental data tested by previous researchers who studied the uni-directional behavior of short columns subjected to cyclic shear displacements. Then, the calibrated column models are further investigated to study the influence of bidirectional cyclic shear. Two scenarios are investigated, namely “simultaneous” and “sequential,” to compare the performance in terms of shear strength reduction.

Findings

The results show that the shear strength reduction significantly appears when 1:1 simultaneous bi-directional cyclic shear is applied. However, the shear reduction is more significant when the sequential scenario is applied. The seismic forces or deformations applied in orthogonal directions should be combined to achieve the maximum seismic response of structures as specified in Federal Emergency Management Agency (FEMA) 356 Standard. Finally, the combinations presented in literature to consider bi-directional shear are investigated. Based on FE results, the effect of applied 1:0.30 bi-directional cyclic shear simultaneously does not result in significant effect on the considered columns properly design for seismic forces.

Originality/value

To investigate the effect of multidirectional shear forces on the shear strength capacity of short columns, the presented effect of multidirectional shear forces in literature to consider bi-directional shear are investigated.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 September 2021

Hemanth Kumar Chinthapalli and Anil Agarwal

Earthquake tremors not only increase the chances of fire ignition but also hinder the fire-fighting efforts due to the damage to the lifelines of a city. Most of the international…

Abstract

Purpose

Earthquake tremors not only increase the chances of fire ignition but also hinder the fire-fighting efforts due to the damage to the lifelines of a city. Most of the international codes have independent recommendations for structural safety against earthquake and fire. However, the possibility of a multi-hazard event, such as fire following an earthquake is seldom addressed.

Design/methodology/approach

This paper presents an experimental study of Reinforced Concrete (RC) columns in post-earthquake fire (PEF) conditions. An experimental approach is proposed that allows the testing of a column instead of a full structural frame. This approach allows us to control the loading and boundary conditions individually and facilitates the testing under a variety of these conditions. Also, it allows the structure to be tested until failure. The role of parameters, such as earthquake intensity, axial load ratio and the ductile detailing of the column on the earthquake damage and subsequently the fire performance of the structure, is studied in this research. Six RC column specimens are tested under a sequence of quasi-static earthquake loading, followed by combined fire and axial compression loading conditions.

Findings

The experiment results indicate that ductile detailed columns subjected to 4% or less lateral drift did not lose significant load-carrying capacity in fire conditions. A lateral drift of 6% caused significant damage to the columns and reduced the load-carrying capacity in fire conditions. The level of the axial load acting on the column at the time of earthquake loading was found to have a very significant effect on the extent of damage and reduction in column load capacity in fire conditions. The columns that were not detailed for a ductile behavior observed a more significant reduction in axial load carrying capacity in fire conditions.

Research limitations/implications

This study is limited to columns of 230 mm size due to the limitations of the test setup. The applicability of these findings to larger column sections needs to be verified by developing a numerical analysis methodology and simulating other post-earthquake-fire tests available in the literature.

Originality/value

The experimental procedure proposed in this paper offers an alternative to the testing of a complete structural frame system for PEF behavior. In addition to the ease of conducting the tests, the procedure also allows much better control over the heating, structural loading and boundary conditions.

Details

Journal of Structural Fire Engineering, vol. 13 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 570