Search results

1 – 10 of over 1000
Article
Publication date: 29 April 2019

Guozhi Li, Fuhai Zhang, Yili Fu and Shuguo Wang

The purpose of this paper is to propose an error model for serial robot kinematic calibration based on dual quaternions.

Abstract

Purpose

The purpose of this paper is to propose an error model for serial robot kinematic calibration based on dual quaternions.

Design/methodology/approach

The dual quaternions are the combination of dual-number theory and quaternion algebra, which means that they can represent spatial transformation. The dual quaternions can represent the screw displacement in a compact and efficient way, so that they are used for the kinematic analysis of serial robot. The error model proposed in this paper is derived from the forward kinematic equations via using dual quaternion algebra. The full pose measurements are considered to apply the error model to the serial robot by using Leica Geosystems Absolute Tracker (AT960) and tracker machine control (T-MAC) probe.

Findings

Two kinematic-parameter identification algorithms are derived from the proposed error model based on dual quaternions, and they can be used for serial robot calibration. The error model uses Denavit–Hartenberg (DH) notation in the kinematic analysis, so that it gives the intuitive geometrical meaning of the kinematic parameters. The absolute tracker system can measure the position and orientation of the end-effector (EE) simultaneously via using T-MAC.

Originality/value

The error model formulated by dual quaternion algebra contains all the basic geometrical parameters of serial robot during the kinematic calibration process. The vector of dual quaternion error can be used as an indicator to represent the trend of error change of robot’s EE between the nominal value and the actual value. The accuracy of the EE is improved after nearly 20 measurements in the experiment conduct on robot SDA5F. The simulation and experiment verify the effectiveness of the error model and the calibration algorithms.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 March 2014

Wei Wang, Gang Wang and Chao Yun

Calibrating kinematic parameters is one of the efficient ways to improve the robot's positioning accuracy. A method based on the product-of-exponential (POE) formula to calibrate…

Abstract

Purpose

Calibrating kinematic parameters is one of the efficient ways to improve the robot's positioning accuracy. A method based on the product-of-exponential (POE) formula to calibrate the kinematic parameters of serial industrial robots is proposed. The paper aims to discuss these issues.

Design/methodology/approach

The forward kinematics is established, and the general positioning error model is deduced in an explicit expression. A simplified model of robot's positioning error is established as both the error of reference configuration and the error of rigid displacement of the base coordinating system with respect to the measuring coordinating system are equivalently transferred to the zero position errors of the robot's joints. A practical calibration model is forwarded only requiring 3D measuring based on least-squares algorithm. The calibration system and strategy for calibrating kinematic parameters are designed.

Findings

By the two geometrical constrains between the twist coordinates, each joint twist only has four independent coordinates. Due to the equivalent error model, the zero position error of each joint can cover the error of reference configuration and rigid displacement of the robot base coordinating system with respect to the measuring coordinating system. The appropriate number of independent kinematic parameters of each joint to be calibrated is five.

Originality/value

It is proved by a group of calibration experiments that the calibration method is well conditioned and can be used to promote the level of absolute error of end effector of industrial robot to 2.2 mm.

Details

Industrial Robot: An International Journal, vol. 41 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 August 2014

Wang Zhenhua, Xu Hui, Chen Guodong, Sun Rongchuan and Lining Sun

The purpose of this paper is to present a distance accuracy-based industrial robot kinematic calibration model. Nowadays, the repeatability of the industrial robot is high, while…

Abstract

Purpose

The purpose of this paper is to present a distance accuracy-based industrial robot kinematic calibration model. Nowadays, the repeatability of the industrial robot is high, while the absolute positioning accuracy and distance accuracy are low. Many factors affect the absolute positioning accuracy and distance accuracy, and the calibration method of the industrial robot is an important factor. When the traditional calibration methods are applied on the industrial robot, the accumulative error will be involved according to the transformation between the measurement coordinate and the robot base coordinate.

Design/methodology/approach

In this manuscript, a distance accuracy-based industrial robot kinematic calibration model is proposed. First, a simplified kinematic model of the robot by using the modified Denavit–Hartenberg (MDH) method is introduced, then the proposed distance error-based calibration model is presented; the experiment is set up in the next section.

Findings

The experimental results show that the proposed calibration model based on MDH and distance error can improve the distance accuracy and absolute position accuracy dramatically.

Originality/value

The proposed calibration model based on MDH and distance error can improve the distance accuracy and absolute position accuracy dramatically.

Details

Industrial Robot: An International Journal, vol. 41 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 April 2021

Jinlei Zhuang, Ruifeng Li, Chuqing Cao, Yunfeng Gao, Ke Wang and Feiyang Wang

This paper aims to propose a measurement principle and a calibration method of measurement system integrated with serial robot and 3D camera to identify its parameters…

Abstract

Purpose

This paper aims to propose a measurement principle and a calibration method of measurement system integrated with serial robot and 3D camera to identify its parameters conveniently and achieve high measurement accuracy.

Design/methodology/approach

A stiffness and kinematic measurement principle of the integrated system is proposed, which considers the influence of robot weight and load weight on measurement accuracy. Then an error model is derived based on the principle that the coordinate of sphere center is invariant, which can simultaneously identify the parameters of joint stiffness, kinematic and hand-eye relationship. Further, considering the errors of the parameters to be calibrated and the measurement error of 3D camera, a method to generate calibration observation data is proposed to validate both calibration accuracy and parameter identification accuracy of calibration method.

Findings

Comparative simulations and experiments of conventional kinematic calibration method and the stiffness and kinematic calibration method proposed in this paper are conducted. The results of the simulations show that the proposed method is more accurate, and the identified values of angle parameters in modified Denavit and Hartenberg model are closer to their real values. Compared with the conventional calibration method in experiments, the proposed method decreases the maximum and mean errors by 19.9% and 13.4%, respectively.

Originality/value

A new measurement principle and a novel calibration method are proposed. The proposed method can simultaneously identify joint stiffness, kinematic and hand-eye parameters and obtain not only higher measurement accuracy but also higher parameter identification accuracy, which is suitable for on-site calibration.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 January 2015

Ahmed Joubair, Long Fei Zhao, Pascal Bigras and Ilian Bonev

The purpose of this paper is to describe a calibration method developed to improve the accuracy of a six degrees-of-freedom medical robot. The proposed calibration approach aims…

1083

Abstract

Purpose

The purpose of this paper is to describe a calibration method developed to improve the accuracy of a six degrees-of-freedom medical robot. The proposed calibration approach aims to enhance the robot’s accuracy in a specific target workspace. A comparison of five observability indices is also done to choose the most appropriate calibration robot configurations.

Design/methodology/approach

The calibration method is based on the forward kinematic approach, which uses a nonlinear optimization model. The used experimental data are 84 end-effector positions, which are measured using a laser tracker. The calibration configurations are chosen through an observability analysis, while the validation after calibration is carried out in 336 positions within the target workspace.

Findings

Simulations allowed finding the most appropriate observability index for choosing the optimal calibration configurations. They also showed the ability of our calibration model to identify most of the considered robot’s parameters, despite measurement errors. Experimental tests confirmed the simulation findings and showed that the robot’s mean position error is reduced from 3.992 mm before calibration to 0.387 mm after, and the maximum error is reduced from 5.957 to 0.851 mm.

Originality/value

This paper presents a calibration method which makes it possible to accurately identify the kinematic errors for a novel medical robot. In addition, this paper presents a comparison between the five observability indices proposed in the literature. The proposed method might be applied to any industrial or medical robot similar to the robot studied in this paper.

Details

Industrial Robot: An International Journal, vol. 42 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 August 2007

James A. Hunt

This paper aims to describe the topic of robot kinematics and provide a modern machine.

1211

Abstract

Purpose

This paper aims to describe the topic of robot kinematics and provide a modern machine.

Design/methodology/approach

The paper examines, in brief, kinematics and robot kinematics, classes, constraints and chains to provide an introduction. An example shows how robot kinematics can benefit the design of advanced machines for industry.

Findings

Robot kinematics, in conjunction with mathematics and other disciplines, lead to a greater understanding of robotics design and control.

Originality/value

This paper discusses robot kinematics in brief as a robot design topic in its own right, as well as presenting the Gantry‐Tau robot as a new and interesting kinematic development. As such, the article should be of general interest to robotics engineers and designers.

Details

Industrial Robot: An International Journal, vol. 34 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 October 2019

Amruta Rout, Deepak Bbvl and Bibhuti B. Biswal

This paper aims to present an optimal trajectory planning for industrial MOTOMAN MA1440A gas metal arc welding system. A new and efficient evolutionary algorithm, enhanced…

Abstract

Purpose

This paper aims to present an optimal trajectory planning for industrial MOTOMAN MA1440A gas metal arc welding system. A new and efficient evolutionary algorithm, enhanced multi-objective teaching learning-based optimization (EMOTLBO) method, i.e. TLBO with non-dominated sorting approach has been proposed to obtain the optimal joint trajectory for the defined weld seam path.

Design/methodology/approach

The joint trajectory of the welding robot need to be computed in an optimal manner for proper torch orientation, smooth travel of the robot along the weld path and for achieving higher positional accuracy. This can be achieved by limiting the kinematic and dynamic variations of the robot joints like joint jerks, squared acceleration and torque induced in the joints while travel of the robot along the weld path. Also, the robot travel should be done within minimum possible time for maintaining productivity. This leads to a multi-objective optimization problem which needs to be solved for maintaining proper orientation of the robot end effector. EMOTLBO has been proposed to obtain the Pareto front consisting of optimal solutions. The fuzzy membership function has been used to obtain the optimal solution from the Pareto front with best trade-off between objectives.

Findings

The proposed method has been implanted in MATLAB R2017a for simulation results. The joint positions have been used to program the robot for performing welding operation along the weld seam. From the simulation and experimental results, it can be concluded that the proposed approach can be effectively used for optimal trajectory planning of MOTOMAN MA 1440 A arc welding robot system as a very smooth and uniform weld bead has been obtained with maximum weld quality.

Originality/value

In this paper, a novel approach for optimal trajectory planning welding arc robot has been performed. Though trajectory planning of industrial robots has been done before, it has not been done yet for welding robot. The objectives are formulated taking in consideration of requirement of welding process like minimization of joint jerks and torques induced during welding operation due to travel of robot with the effect of arc spatter, minimization of squared acceleration for maintaining constant joint velocity and finally minimization of total travel time for maintaining productivity.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 December 2018

Hua Liu, Weidong Zhu, Huiyue Dong and Yinglin Ke

This paper aims to propose a calibration model for kinematic parameters identification of serial robot to improve its positioning accuracy, which only requires position…

Abstract

Purpose

This paper aims to propose a calibration model for kinematic parameters identification of serial robot to improve its positioning accuracy, which only requires position measurement of the end-effector.

Design/methodology/approach

The proposed model is established based on local frame representation of the product of exponentials (local POE) formula, which integrates all kinematic errors into the twist coordinates errors; then they are identified with the tool frame’ position deviations simultaneously by an iterative least squares algorithm.

Findings

To verify the effectiveness of the proposed method, extensive simulations and calibration experiments have been conducted on a 4DOF SCARA robot and a 5DOF drilling machine, respectively. The results indicate that the proposed model outperforms the existing model in convergence, accuracy, robustness and efficiency; fewer measurements are needed to gain an acceptable identification result.

Practical implications

This calibration method has been applied to a variable-radius circumferential drilling machine. The machine’s positioning accuracy can be significantly improved from 11.153 initially to 0.301 mm, which is well in the tolerance (±0.5 mm) for fastener hole drilling in aircraft assembly.

Originality/value

An accurate and efficient kinematic calibration model has been proposed, which satisfies the completeness, continuity and minimality requirements. Due to generality, this model can be widely used for serial robot kinematic calibration with any combination of revolute and prismatic joints.

Details

Industrial Robot: An International Journal, vol. 45 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 November 2018

Chen Shen, Youping Chen, Bing Chen and Yu Qiao

This paper aims to propose a novel robot kinematic calibration method based on the common perpendicular line (CPL) model to improve the absolute accuracy of industrial robots.

Abstract

Purpose

This paper aims to propose a novel robot kinematic calibration method based on the common perpendicular line (CPL) model to improve the absolute accuracy of industrial robots.

Design/methodology/approach

The deviation between the nominal and actual twists is considered the CPL transformation, which includes the rotation about the CPL and the translation along the CPL. By using the invariance of the reciprocal product of the two spatial lines, the previous deviation was analyzed in the neighbor space of the base frame origin. In this space, the line vector of the CPL contained only four independent parameters: two orientation elements and two moment elements. Thus, the CPL model has four independent parameters for the revolute joint and two parameters for the prismatic joint.

Findings

By simulations and experiment conducted on a SCARA robot and a 6-DOF PUMA robot, the effectiveness of the novel method for calibration of industrial robot is validated.

Originality/value

The CPL model avoided the normalization and orthogonalization in the iterative identification procedure. Therefore, identifying the CPL model was not only simpler but also more accurate than that of the traditional model. In addition, the results of the CPL transformation strictly conformed to the constraints of the twist.

Details

Industrial Robot: An International Journal, vol. 45 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 August 2017

Gregor Lux, Marco Ulrich, Thomas Baker, Martin Hutterer and Gunther Reinhart

Articulated robots are widely used in industrial applications owing to their high repeatability accuracy. In terms of new applications such as robot-based inspection systems, the…

Abstract

Purpose

Articulated robots are widely used in industrial applications owing to their high repeatability accuracy. In terms of new applications such as robot-based inspection systems, the limitation is a lack of pose accuracy. Mostly, robot calibration approaches are used for the improvement of the pose accuracy. Such approaches however require a profound understanding of the determining effects. This paper aims to provide a non-destructive analysis method for the identification and characterisation of non-geometric accuracy effects in relation to the kinematic structure for the purpose of an accuracy enhancement.

Design/methodology/approach

The analysis is realised by a non-destructive method for rotational, uncoupled robot axes with the use of a 3D lasertracker. For each robot axis, the lasertracker position data for multiple reflectors are merged with the joint angles given by the robot controller. Based on this, the joint characteristics are determined. Furthermore, the influence of the kinematic structure is investigated.

Findings

This paper analyses the influence of the kinematic structure and non-geometric effects on the pose accuracy of standard articulated robots. The provided method is shown for two different industrial robots and presented effects incorporate tilting of the robot, torsional joint stiffness, hysteresis, influence of counter balance systems, as well as wear and damage.

Practical implications

Based on these results, an improved robot model for a better match between the mathematical description and the real robot system can be achieved by characterising non-geometric effects. In addition, wear and damages can be identified without a disassembly of the system.

Originality/value

The presented method for the analysis of non-geometric effects can be used in general for rotational, uncoupled robot axes. Furthermore, the investigated accuracy influencing effects can be taken into account to realise high-accuracy applications.

Details

Industrial Robot: An International Journal, vol. 44 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 1000