Search results

1 – 10 of 791
To view the access options for this content please click here
Article
Publication date: 20 April 2020

Teng Xiao, Daosheng Wen, Shouren Wang, Mingyuan Zhang, Beibei Kong and Qiqi Yu

This paper aims to investigate the fretting wear mechanism of an Al-Li alloy at room temperature, the tangential fretting wear tests were carried out.

Abstract

Purpose

This paper aims to investigate the fretting wear mechanism of an Al-Li alloy at room temperature, the tangential fretting wear tests were carried out.

Design/methodology/approach

The effects of displacement amplitude and fretting frequency on the tangential fretting wear characteristics were mainly investigated. The experimental data obtained are analyzed and compared.

Findings

The results indicated that the fretting friction coefficient increased with the increase of displacement amplitude. As the displacement amplitude increased, the wear scar morphology changed significantly, mainly in terms of delamination debris and furrow scratches. The wear mechanism changed from initial mild wear to more severe oxidative wear, adhesive wear and abrasive wear.

Originality/value

This paper extends the knowledge into mechanical tight connections. The conclusions can provide theoretical guidance for the fretting of mechanical tight connections in the field of automotive lightweight and aerospace.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0490/

Details

Industrial Lubrication and Tribology, vol. 72 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 8 March 2011

Z.A. Wang, Z.R. Zhou and G.X. Chen

The paper aims to study comparatively the fretting behavior in gross slip regime of fretting both under grease lubrication and dry condition and to investigate the…

Abstract

Purpose

The paper aims to study comparatively the fretting behavior in gross slip regime of fretting both under grease lubrication and dry condition and to investigate the mechanism of palliation of fretting wear with grease lubrication.

Design/methodology/approach

All fretting tests were carried out on high‐temperature fretting devices with standard GCr15 bearing steel ball against 45 steel flat and against GCr15 bearing steel flat contact pairs. The wear scar was examined by optical microscope, surface profiler and the confocal laser scanning microscope as well as energy dispersive X‐ray spectroscopy.

Findings

Compared with dry condition, the coefficient of friction and wear are decreased drastically and wear occurs mainly at the early stage of fretting under grease lubrication. The palliation effect of grease lubrication is closely associated with the amount of oil separated from the grease, the low‐oxidation corrosion and high‐hardness white layer. However, the bubbles which expelled from the contact edges have little influence on fretting wear.

Research limitations/implications

The tested greases do not contain any additives for preventing possible misinterpretations of the results, but it is necessary to investigate the influence of different lubricant additives added to grease on friction and wear at different fretting conditions.

Practical implications

The research reveals that the palliation effect of grease lubrication on fretting wear is related closely to the amount of oil separated from the grease. The bigger penetration and more susceptible greases, which are easier to separate from the base oil, should be taken into account for palliation of fretting wear.

Originality/value

The presented results help to understand the palliation mechanism of grease lubrication and could be useful for designers of engineering assembly for which fretting wear is an issue.

Details

Industrial Lubrication and Tribology, vol. 63 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 1 June 1975

P.L. Hurricks

The paper deals in some detail with the fretting wear behaviour of mild steel from room temperature to 600°C in an air atmosphere. The general mechanism of fretting for…

Abstract

The paper deals in some detail with the fretting wear behaviour of mild steel from room temperature to 600°C in an air atmosphere. The general mechanism of fretting for mild steel is discussed both at the lower temperatures and also at higher temperatures where normal oxidative processes become involved in the fretting mechanism. Both surface metallographic observations and surface SEM observations are presented in support of the wear processes involved. It is shown that there is a well defined wear transition temperature occurring in the region of 200°C together with the possibility of a second transition temperature occurring between 500 and 600°C. Finally, some consideration is given to the activation energy for tribo‐oxidation under fretting conditions and the manner in which the rate controlling factor changes from adhesion to oxidation as the temperature of wear increases.

Details

Industrial Lubrication and Tribology, vol. 27 no. 6
Type: Research Article
ISSN: 0036-8792

To view the access options for this content please click here
Article
Publication date: 15 August 2008

T.S.N. Sankara Narayanan, Young Woo Park and Kang Yong Lee

The objective of this paper is to study the effect of a commercial lubricant, which contains a 50‐50 mixture of zinc diamyldithiocarbamate and petroleum oil, on the…

Abstract

Purpose

The objective of this paper is to study the effect of a commercial lubricant, which contains a 50‐50 mixture of zinc diamyldithiocarbamate and petroleum oil, on the fretting corrosion of tin‐plated copper alloy contacts.

Design/methodology/approach

The change in contact resistance as a function of fretting cycles was used to assess the effectiveness of the lubricant in preventing the fretting corrosion of tin‐plated contacts. The surface profile, surface roughness, extent of fretting damage and extent of oxidation of the contact zone were assessed by a laser scanning microscope and surface analytical techniques to correlate the change in contact resistance with fretting cycles.

Findings

The lubricant film provides a surface coverage of 6.76±1 mg/cm2 and it easily establishes metallic asperity contact between the mated tin‐plated contacts. The contact resistance of lubricated contacts remains stable for several thousand fretting cycles. Lubricated contacts reach a threshold value of 0.1 Ω around 100,000 cycles, whereas unlubricated contact reaches this value around 13,500 cycles itself. For lubricated contacts, the extent of mechanical wear of the tin coating is significantly reduced. As a result, they experience a lesser damage at the contact zone and exhibit a smoother profile. The formation of tin oxide is not appreciable and there is no oxide accumulation at the contact zone even at 380,000 cycles. The lubricant is very effective in delaying the fretting wear during the initial stages and in preventing the oxidation and accumulation of oxidation products at the contact zone in the later stages.

Originality/value

Metallic dialkyldithiocarbamates are useful anti‐wear and extreme pressure additives for lubricating oils. Dithiocarbamates improve the antioxidant properties of the lubricants and are effective in reducing the wear and increasing the friction‐reducing and load‐carrying ability of the base stock. The use of molybdenum dithiocarbamate as a grease additive is found to be effective in reducing fretting corrosion of ball bearings under random rotary vibrating conditions. The effect of dithiocarbamate containing lubricant oils or greases on the fretting corrosion of electrical contacts has not far been studied. The paper explores the effect of a lubricant that contains a 50‐50 mixture of petroleum oil and zinc diamyldithiocarbamate on the fretting corrosion of tin‐plated contact.

Details

Industrial Lubrication and Tribology, vol. 60 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 18 November 2019

Mengjiao Wang, Yunxia Wang, Hao Liu and Fengyuan Yan

This paper aims to study the influence of load and environment medium on the fretting behavior of SAF 2507 SDSS.

Abstract

Purpose

This paper aims to study the influence of load and environment medium on the fretting behavior of SAF 2507 SDSS.

Design/methodology/approach

In this study, the effect of load on the fretting behavior of SAF 2507 SDSS in air and sea water were studied. The fretting wear tests under different loads were conducted with a ball-on-flat contact configuration. The friction coefficient, wear volume, surface morphology and oxidation component were determined.

Findings

With the increase of applied load, the friction coefficient decreases both in air and sea water. The fretting mechanism is gradually transformed from partial slip regime to slip regime in air while the fretting counterparts are all in the state of gross slip in sea water. In sea water, the friction coefficient is lower while the wear loss is higher compared with that in air.

Research limitations/implications

This research suggests that the fretting behavior of SAF 2507 SDSS is related to load and environment medium.

Practical implications

The results may help us to choose the appropriate load under different environments.

Originality/value

The main originality of the research is to reveal the fretting behavior of SAF 2507 SDSS under different loads in air and sea water, which would help us to realize fretting behavior of SAF 2507 SDSS is controlled by the combination of applied load and lubricating environment.

Peer review

The peer review history for this article is available at: http://dx.doi.org/10.1108/ILT-08-2019-0335.

Details

Industrial Lubrication and Tribology, vol. 72 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 1 January 1976

P.L. Hurricks

The first part of this paper appeared in our November/December issue and dealt with fretting wear behaviour of mild steel from room temperature to 600°C in air. The…

Abstract

The first part of this paper appeared in our November/December issue and dealt with fretting wear behaviour of mild steel from room temperature to 600°C in air. The general mechanism for fretting is discussed at all temperatures where normal oxidative processes become involved. The nature of fretting wear is also covered and the effects of temperature are described. In this part of the paper, the discussion is continued to include triboxidation, delamination theory, atmospheric environment, transition temperatures, activitation energy and other factors affecting the influence of temperature on fretting.

Details

Industrial Lubrication and Tribology, vol. 28 no. 1
Type: Research Article
ISSN: 0036-8792

To view the access options for this content please click here
Article
Publication date: 16 September 2013

Dagang Wang, Dekun Zhang and Shirong Ge

The objective of this paper is to determine fretting parameters of hoisting rope according to the hoisting parameters in coalmine and to explore the effect of contact load…

Abstract

Purpose

The objective of this paper is to determine fretting parameters of hoisting rope according to the hoisting parameters in coalmine and to explore the effect of contact load on fretting-fatigue behavior of steel wires.

Design/methodology/approach

Based on the mechanical model of hoisting rope in coalmine, the dynamic tension simulation of hoisting rope was performed. Static equations of hoisting rope under tension and torsion and theories of contact mechanics were applied to obtain fretting parameters. Fretting-fatigue tests of steel wires at different contact loads were conducted using a fretting-fatigue test rig. The fretting regime, normalized tangential force and fretting-fatigue life were studied. The morphologies of fretting contact scars and fracture surfaces were observed by scanning electron microscopy and optical microscopy to examine wear and failure mechanisms.

Findings

Dynamic tension changes from 0 to 30,900 N. In outer strand layer, contact loads between steel wires in certain wire layers are 60.5 and 38.3 N compared with 378 and 102.7 N between wire layers; relative displacements between wires are 62.5 and 113.2 μm, respectively. Mixed fretting regimes develop in all cases. Increasing contact load decreases the stabilized relative slip and normalized tangential force, reduces the fretting fatigue life, induces accelerated adhesive wear and fatigue wear and results in rougher fracture surface topographies. In all cases, fretting zone induces crack initiation; crack propagation and rupture zones present brittle cleavage and longitudinal splitting, respectively.

Practical implications

This paper presents the systemic study on determination of fretting parameters of hoisting rope according to the hoisting parameters in coalmine and the fretting-fatigue behavior of its internal steel wires. The results of fretting-fatigue tests show that the increase of contact load decreases the stabilized relative slip in mixed fretting regime and normalized tangential force, reduces the fretting fatigue life, induces accelerated adhesive wear and fatigue wear and results in rougher fracture surface topographies.

Originality/value

The authors warrant that the paper is original submission and is not being submitted to any other journal. And the research does not involve confidentiality, copyright infringement, leaks and other issues, all the responsibilities that the authors will take.

Details

Industrial Lubrication and Tribology, vol. 65 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 7 March 2008

Antoni Neyman and Jan Sikora

The aim of this paper is to research grease and additives' influence on fretting wear of mild steel.

Abstract

Purpose

The aim of this paper is to research grease and additives' influence on fretting wear of mild steel.

Design/methodology/approach

Experiments were performed on a laboratory stand with contact conditions cylinder on flat. The mild steel couples were tested under dry conditions and lubricated with mineral and synthetic greases containing as additives: graphite, molybdenum disulphide, ZDDP and molybdenum dithiocarbamate in different concentrations.

Findings

The results revealed a significant influence of grease consistency and its welding load on the fretting wear of steel couples. Graphite and molybdenum disulphide were effective in a 10 percent concentration. ZDDP additive in a more than 1 percent concentration increased fretting wear. Molybdenum dithiocarbamate was not more effective than molybdenum disulphide powder. Grease lubrication of the fretted couple changed significantly the wear mechanism observed on SEM photographs of fretting scars.

Practical implications

The paper presents some indications of proper selection of grease for fretting prevention.

Originality/value

The influence of the main features of grease on fretting wear was confirmed on the basis of extensive investigation.

Details

Industrial Lubrication and Tribology, vol. 60 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 1 June 1954

W.E. Campbell, E.W. Herbek, Jnr. and R.F. Strohecker

Fretting corrosion—a surface damage occurring between two closely fitting surfaces subject to slight vibrational movement—has caused trouble in machinery ever since the…

Abstract

Fretting corrosion—a surface damage occurring between two closely fitting surfaces subject to slight vibrational movement—has caused trouble in machinery ever since the first closely fitting machined parts were put together. It is something different from ordinary wear or rusting of the usual chemical nature, and it is not always recognised as fretting corrosion by users of equipment in which it occurs. ‘Friction oxidation,’ ‘wear oxidation,’ ‘false brinelling,’ ‘chafing,’ ‘bleeding’ and ‘cocoa’ are some of the names that have been applied to the phenomenon. One of the results of work carried out by the Mechanical Engineering Research Laboratory of the D.S.I.R., briefly described in CORROSION TECHNOLOGY, May 1954, is that it is possible to correlate the degree of damage with such variables as total number of oscillations, load or atmospheric humidity. In the United States, too, much work has been done on fretting corrosion and ways of combating it. So that as many as possible could benefit from this research, the American Society for Testing Materials organised a Symposium in which leading experts gave their findings. The Symposium has recently been published as a booklet. Here are shortened versions of two of the papers presented.

Details

Anti-Corrosion Methods and Materials, vol. 1 no. 6
Type: Research Article
ISSN: 0003-5599

To view the access options for this content please click here
Article
Publication date: 29 July 2020

Xiaocui Xin, Yunxia Wang, Zhaojie Meng, Hao Liu, Yunfeng Yan and Fengyuan Yan

This paper aims to focus on studying the addition of nano-tungsten disulfide (WS2) on fretting wear performance of ultra-high-molecular-weight-polyethylene (UHMWPE).

Abstract

Purpose

This paper aims to focus on studying the addition of nano-tungsten disulfide (WS2) on fretting wear performance of ultra-high-molecular-weight-polyethylene (UHMWPE).

Design/methodology/approach

In this study, the effect of WS2 content on fretting wear performance of UHMWPE was investigated. The fretting wear performance of the UHMWPE and WS2/UHMWPE nanocomposites were evaluated on oscillating reciprocating friction and wear tester. The data of the friction coefficient and the specific wear rate were obtained. The worn surfaces of composites were observed. The transfer film and its component were analyzed.

Findings

With the addition of 0.5% WS2, the friction coefficient and specific wear rate increased. With the content increased to 1% and 1.5%, the friction coefficient and specific wear rate decreased. The lowest friction coefficient and specific wear rate were obtained with the addition of 1.5% nano-WS2. Continuingly increasing content, the friction coefficient and wear rate increased but lower than that of pure UHMWPE.

Research limitations/implications

The research indicated the fretting wear performance related to the content of nano-WS2 with the incorporation of WS2 into UHMWPE.

Practical implications

The result may help to choose the appropriate content.

Originality/value

The main originality of the research is to reveal the fretting behavior of UHMWPE and WS2/UHMWPE nanocomposites. It makes us realize the nano-WS2 had an effect on the fretting wear performance of UHMWPE.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2020-0151/

Details

Industrial Lubrication and Tribology, vol. 73 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 791