Search results

1 – 10 of 55
Article
Publication date: 11 April 2023

Yulei Yang, Jimin Xu and Yi Liang

Quantitative fretting wear prediction is of practical significance for industrial components. This study aims to establish a fretting wear model considering the formation of…

Abstract

Purpose

Quantitative fretting wear prediction is of practical significance for industrial components. This study aims to establish a fretting wear model considering the formation of tribolayers and provide better fretting wear prediction.

Design/methodology/approach

Based on the characteristics for the formation of tribolayers, the ratio of fretting amplitude to nominal contact area length in the fretting direction is used to characterize their formation and contribution to the wear volume. The wear volume is then associated with the product of the friction energy and the ratio of fretting amplitude to nominal contact area length.

Findings

Better prediction in the wear volume can be achieved with the proposed fretting wear model by taking the formation of tribolayers into consideration.

Originality/value

The contribution of the formation of tribolayers to the wear volume is considered in the model and better prediction can be achieved.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2023-0004/

Details

Industrial Lubrication and Tribology, vol. 75 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 August 2020

Marlene Bartolomé Sáez, Antolin E. Hernández Battez, Jorge Espina Casado, José L. Viesca Rodríguez, Alfonso Fernández-González and Rubén González Rodriguez

The purpose of this paper is to study the antifriction, antiwear and tribolayer formation properties of the trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl) phosphinate…

Abstract

Purpose

The purpose of this paper is to study the antifriction, antiwear and tribolayer formation properties of the trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl) phosphinate ionic liquid (IL) as additive at 1 wt.% in two base oils and their mixtures, comparing the results with those of a commercial oil.

Design/methodology/approach

The mixture of the base oils used in the formulation of the commercial oil SAE 0W20 plus the IL was tested under rolling/sliding and reciprocating conditions to determine the so-called Stribeck curve, the tribolayer formation and the antifriction and antiwear behaviors.

Findings

The use of this IL as additive in these oils does not change their viscosity; improves the antifriction and antiwear properties of the base oils, making equal or outperforming these properties of the SAE 0W20; and the thickness and formation rate of the tribolayer resulting from the IL-surface interaction is highly dependent on the type of base oil and influence on the friction and wear results.

Originality/value

The use of this IL allows to replace partial or totally commercial antifriction and antiwear additives.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2020-0179/

Details

Industrial Lubrication and Tribology, vol. 73 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 June 2016

Amir Motallebzadeh, Erdem Atar and Huseyin Cimenoglu

This paper aims to study microstructure and high temperature tribological performance of hypo-eutectic CoCrWC hardfacing alloy (Stellite 12) deposited on steel substrate by…

Abstract

Purpose

This paper aims to study microstructure and high temperature tribological performance of hypo-eutectic CoCrWC hardfacing alloy (Stellite 12) deposited on steel substrate by plasma-transferred arc (PTA) welding technique.

Design/methodology/approach

Microstructural characterization of the deposited coating was made using electron probe microanalysis, X-ray diffraction and microhardness tester. Dry sliding wear tests were carried out with a ball-on-disc type tribometer at room and elevated temperature. Worn surfaces of the samples were examined by the EDX equipped SEM and Raman spectroscopy.

Findings

Results revealed that at room temperature and 300°C plasticity dominated wear mechanism was operative. Under oxidation dominated wear conditions (400, 500, 600 and 700°C), testing temperature plays a crucial role on the characteristics of the oxide tribolayers formed on worn surfaces. Development of Cr2O3 in the tribolayer at 600 and 700°C was beneficial in increasing wear resistance of examined coating.

Originality/value

While the sliding wear performance of Stellite alloys at room temperature has been investigated in details, published studies on tribological behavior of Stellite alloys with varying temperature are scarce. Therefore, the present work was undertaken to study the wear mechanisms and the type of tribolayers formed during sliding wear of PTA welding deposited hypo-eutectic Stellite 12 coating with increasing temperature up to 700°C.

Details

Industrial Lubrication and Tribology, vol. 68 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 January 2017

Christian Busch, Simon Weber and Reinhardt Schneider

The purpose of this paper, an R&D project, is to select Globally Harmonized System of Classification and Labeling of Chemicals (GHS)-unclassified white solid lubricants for…

Abstract

Purpose

The purpose of this paper, an R&D project, is to select Globally Harmonized System of Classification and Labeling of Chemicals (GHS)-unclassified white solid lubricants for formulating special lubricating oils, greases and pastes to prevent tribological systems against fretting wear.

Design/methodology/approach

The scientific methodology reads as follows: market research to select appropriate additives according to the purpose of the R&D project; screening tests to determine the technical performance of the additives; advanced technical studies and tests to validate the technical performance of the lubricating additives; determination of the reaction layers; and clarification of the build-up mechanism of the reaction layers (practical tests).

Findings

The findings of the R&D project can be summarized as follows: the selected white solid lubricants perform in lubricating oils, greases and pastes highly effective against fretting wear. The performance could be shown on the basis of representative test results and highlights its advantages compared to the state of the art.

Research limitations/implications

The research team faced some challenges during the R&D project – the unsuitability of standard test measurements as well as DIN, ISO and ASTM test parameters led to limitations and increased effort.

Originality/value

The motivation and main target to conduct the R&D project was to increase the consumer and operator safety by using unclassified (GHS) high performance lubricants. The findings of the project show clearly that the tasks could be fulfilled. Special, unclassified (GHS) selected white solid lubricants are able to form a reaction layer on metal surfaces and separate effectively the surfaces within the tribological system. No fretting wear accrued. The consumer can gain substantial benefits on the economical side as well as on the ecological side.

Details

Industrial Lubrication and Tribology, vol. 69 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 August 2015

Luciano Castro Lara, Henara Costa and José Daniel Biasoli de Mello

This paper aims to analyse the influence of the thickness of different layers [diamond-like-carbon (DLC) and chromium nitride (CrN)] on the sliding wear behaviour of a…

Abstract

Purpose

This paper aims to analyse the influence of the thickness of different layers [diamond-like-carbon (DLC) and chromium nitride (CrN)] on the sliding wear behaviour of a multifunctional coating on AISI 1020 substrates. When small and cheap components need to be manufactured in large scale, they are often produced using soft metals, such as unhardened low carbon steels and pure iron.

Design/methodology/approach

Two families, one with thicker films and the other with thinner films, were deposited onto a soft carbon steel substrate by plasma-enhanced chemical vapour deposition (PECVD). Reciprocating linear tests with incremental loading assessed the durability of the coatings. In addition, friction coefficient and wear rates of both specimens and counterbodies were measured at a constant load.

Findings

Thinner layers presented lower sliding wear rates (four-five times lower) for both specimens and counterbodies, less spalling and protective tribolayers on the wear tracks.

Originality/value

Although multilayered CrN–DLC coatings on relatively hard substrates such as HSS and cemented carbide tools are already a proven technology, much less is known about its deposition on a much softer substrate such as low carbon steel. In previous works, we have analysed the influence of layer thickness on hardness and scratch resistance of the same coatings. This paper presents results for their performance under wear sliding conditions using an original approach (three-dimensional triboscopic maps) for two distinct configurations (increasing load and constant load).

Details

Industrial Lubrication and Tribology, vol. 67 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 July 2021

Mohammed Fahad and Bavanish B.

Aviation field requires a material with greater tribological characteristics to withstand the critical climate conditions. Hence, it is of paramount importance to enhance the wear…

101

Abstract

Purpose

Aviation field requires a material with greater tribological characteristics to withstand the critical climate conditions. Hence, it is of paramount importance to enhance the wear resistance of material. AZ91D magnesium alloy is a light weight material used in the aviation field for the construction work. The purpose of this study is to augment the wear properties of AZ91D alloy by reinforcing with hard particles such as tungsten carbide (WC) and silicon dioxide (SiO2).

Design/methodology/approach

In this work, three types of composites were fabricated, namely, AZ91D – WC, AZ91D – SiO2 and AZ91D – (WC + SiO2) by ball milling method, and the tribological properties were analyzed using pin-on-disc apparatus.

Findings

Results showed that the hardness of AZ91D alloy was greatly improved due to the reinforcing effects of WC and SiO2 particles. Wear study showed that wear rate of AZ91D alloy and its composites increased with the increase of applied load due to ploughing effect and decreased with the increase of sliding speed owing to the formation of lubricating tribolayer. Further, the AZ91D – (WC + SiO2) composite exhibited the lower wear rate of 0.0017 mm3/m and minimum coefficient of friction of 0.33 at a load of 10 N and a sliding speed of 150 mm/s due to the inclusion of hybrid WC and SiO2 particles. Hence, the proposed AZ91D – (WC + SiO2) composite could be a suitable candidate to be used in the aviation applications.

Originality/value

This work is original which deals with the effect of hybrid particles, i.e. WC and SiO2 on the wear performance of the AZ91D magnesium alloy composites. The literature review showed that none of the studies focused on the reinforcement of AZ91D alloy by the combination of carbide and metal oxide particles as used in this investigation.

Details

Industrial Lubrication and Tribology, vol. 73 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 May 2020

Crislaine da Cruz, Ivan Mathias, Mariza Veiga Senk, Gelson Biscaia de Souza and Francisco Carlos Serbena

Lithium disilicate glass-ceramics (LS2 GC) are widely used as dental prosthetics and dental restorations. Based LS2 GC have hardness and translucency similar to that of natural…

Abstract

Purpose

Lithium disilicate glass-ceramics (LS2 GC) are widely used as dental prosthetics and dental restorations. Based LS2 GC have hardness and translucency similar to that of natural teeth. This study aims to investigate the tribological features of LS2 GC with crystalline volume fraction of 64% and different crystal sizes from 8 µm to 34 µm for different counterparts.

Design/methodology/approach

The tribological behavior was investigated using a pin-on-disc tribometer with alumina and tungsten carbide (WC) spheres, applied load of 5 N and sliding speed of 5 cm/s at normal conditions. The coefficient of friction was measured continuously up to 10,000 sliding cycles. The specific wear rate was calculated from tribological and profile measurements. The wear mechanism was investigated by surface morphology analysis.

Findings

The coefficient of friction during running-in varied from 0.8 to 1.0 for the alumina counterpart, because of severe wear. Afterwards, it reduced and reached a stationary regime, characterized by a mild wear regime and the formation of a tribolayer formed by the debris. For the WC counterpart, the coefficient of friction curves increased initially with sliding cycles up to a stationary regime. The samples tested against WC presented the lowest specific wear rate (k), and no variation of wear rate with crystal size was observed. For samples tested against the alumina, crystallization and crystal size increased the wear resistance.

Originality/value

This study evaluated the effect of different counterfaces on the tribological properties of the LS2 GC, an important glass-ceramic base for many dental prosthetics and dental restorations, discussing results in light of the contact mechanics. Different specific wear rates, wear regimes and dependence on the glass-ceramic microstructure were observed depending on the counterpart.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2019-0352/

Details

Industrial Lubrication and Tribology, vol. 72 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 May 2018

Viswanatha B.M., M. Prasanna Kumar, S. Basavarajappa and T.S. Kiran

This paper aims to investigate the wear behaviors of aged metal matrix composites and of the as-cast Al-Si alloy by using a pin-on-disk wear testing machine at room temperature.

Abstract

Purpose

This paper aims to investigate the wear behaviors of aged metal matrix composites and of the as-cast Al-Si alloy by using a pin-on-disk wear testing machine at room temperature.

Design/methodology/approach

Hypoeutectic (Al-7Si) alloy reinforced with low volume fractions of SiC particles (SiCp) and graphite (Gr) particles were prepared by the stir-casting process. It was found that the addition of 9 Wt.% of SiCp and 3 Wt.% of Gr particles conferred a beneficial effect in reducing the wear rate of the composites.

Findings

The worn-out surfaces of the specimens were examined using scanning electron microscopy (SEM); the extensive micro cracking occurs on the surface of the Al-7Si alloy tested at lower loads. The growth of these microcracks finally led to the delamination of the base alloy surface. The reinforcements (SiCp and Gr) particles tended to reduce the extent of plastic deformation in the surface layer, thereby reducing extensively the occurrence of micro cracking in the composites.

Originality/value

From the results, it is revealed that the quantity of wear rate was less for aged specimens compared to the as-cast specimens. The worn-out surfaces were studied using electron dispersive spectroscopy, and wear debris was analyzed using SEM.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 March 2023

Bibo Yao, Zhenhua Li, Baoren Teng and Jing Liu

Laser powder bed fusion (LPBF) can be used to fabricate complex extrusion die without the limitation of structures. Layer-by-layer processing leads to differences in…

Abstract

Purpose

Laser powder bed fusion (LPBF) can be used to fabricate complex extrusion die without the limitation of structures. Layer-by-layer processing leads to differences in microstructures and wear properties. This study aims to investigate the microstructure evolution and effects of tungsten carbide (WC) on the wear properties of LPBF-printed 18Ni300.

Design/methodology/approach

Economical spherical granulation-sintering-deoxygenation (GSD) WC-reinforced 18Ni300 steel matrix composites were produced by LPBF from powder mixtures of WC and 18Ni300. The effects of WC contents on anisotropic microstructures and wear properties of the composites were investigated.

Findings

The relative density is more than 99% for all the composites except 25% WC/18Ni300 composite. The grain sizes distributed on the top cross-section are smaller than those on the side cross-section. After adding WC particles, more high-angle grain boundaries and larger Schmid factor generate, and deformed grains decrease. With increasing WC contents, the hardness first decreases and then increases but the wear volume loss decreases. The side cross-section of the composite has higher hardness and better wear resistance. The 18Ni300 exhibits adhesive wear accompanying with abrasive wear, while plowing and fatigue wear are the predominant wear mechanisms of the composites.

Originality/value

Economical spherical GSD WC particles can be used to improve the wear resistance. The novel WC/18Ni300 composites are suitable for the application under the abrasive wear condition with low stress.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 August 2021

Laura Rosenkranz, Silvia Richter, Georg Jacobs, Adrian Mikitisin, Joachim Mayer, Andreas Stratmann and Florian König

Rolling bearing operation under mixed and boundary lubrication conditions may lead to heavy adhesive or abrasive wear, which may lead to wear-induced rolling bearing failure. The…

Abstract

Purpose

Rolling bearing operation under mixed and boundary lubrication conditions may lead to heavy adhesive or abrasive wear, which may lead to wear-induced rolling bearing failure. The purpose of this paper is to investigate the wear protection capabilities of different grease compositions at varying temperatures. It is considered that the temperature influences the lubrication conditions, the behaviour of grease components, namely, bleed oil and thickener, as well as the tribofilm formation due to tribo-chemical interactions between additives and surfaces.

Design/methodology/approach

In this study, four different greases were produced on the basis of a mineral base oil by varying the thickener and the addition of ZDDP. Various grease-lubricated rolling bearing experiments were conducted in a wide temperature range from 0°C to 120°C. Subsequently, the wear pattern, tribofilm formation and grease structures were analysed. Thereby, the influence of the different grease thickeners and the performance of ZDDP as a common antiwear and extreme pressure additive was evaluated.

Findings

The results show a strong temperature-dependency and allow a classification of temperature ranges concerning wear protection. At low temperatures, all greases provide a very good wear protection without the evidence of additive-based tribofilm formation. In the experiments at elevated temperatures, ZDDP tribofilms were formed. The formation depends on the thickener type: in comparison to lithium thickener, polyurea thickener favours more protective tribofilms at the same temperature. The experimental results show that medium temperatures in the range of 40°C–60°C are critical concerning wear due to the insufficient tribolayer formation and limited load carrying capacity of the grease.

Originality/value

Temperature is a key operating parameter for grease lubrication in roller bearings. The experimental work enables consideration of different impact pathways of temperature by combining roller bearing tests and microanalysis.

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 55