Search results

1 – 10 of over 12000
Article
Publication date: 26 March 2024

Zhiqiang Wang

This paper aims to present a novel lightweight distribution grid operating robot system with focus on lightweight and multi-functionality, aiming for autonomous and live-line…

Abstract

Purpose

This paper aims to present a novel lightweight distribution grid operating robot system with focus on lightweight and multi-functionality, aiming for autonomous and live-line maintenance operations.

Design/methodology/approach

A ground-up redesign of the dual-arm robotic system with 12-DoF is applied for substantial weight reduction; a dual-mode operating control framework is proposed, with vision-guided autonomous operation embedded with real-time manual teleoperation controlling both manipulators simultaneously; a quick-swap tooling system is developed to conduct multi-functional operation tasks. A prototype robotic system is constructed and validated in a series of operational experiments in an emulated environment both indoors and outdoors.

Findings

The overall weight of the system is successfully brought down to under 150 kg, making it suitable for the majority of vehicle-mounted aerial work platforms, and it can be flexibly and quickly deployed in population dense areas with narrow streets. The system equips with two dexterous robotic manipulators and up to six interchangeable tools, and a vision system for AI-based autonomous operations. A quick-change tooling system ensures the robot to change tools on-the-go without human intervention.

Originality/value

The resulting dual-arm robotic live-line operation system robotic system could be compact and lightweight enough to be deployed on a wide range of available aerial working platforms with high mobility and efficiency. The robot could both conduct routine operation tasks fully autonomously without human direct operation and be manually operated when required. The quick-swap tooling system enables lightweight and durable interchangeability of multiple end-effector tools, enabling future expansion of operating capabilities across different tasks and operating scenarios.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 August 2024

Ercan Emin Cihan and Özgür Kabak

This study aims to establish a robust evaluation framework for suppliers within the automotive supply chain, specifically in the stamping sector. The primary objectives are to…

72

Abstract

Purpose

This study aims to establish a robust evaluation framework for suppliers within the automotive supply chain, specifically in the stamping sector. The primary objectives are to elucidate the performance criteria of suppliers, identify indicators and scales for measuring these criteria and find the importance of the criteria.

Design/methodology/approach

The evaluation framework comprises a criteria hierarchy and indicators developed based on the evaluation criteria of major automotive manufacturers. Specific indicators and measurement scales are recommended for assessing suppliers. Importance weights for the criteria are assigned based on the input of nine experts using the Analytic Hierarchy Process (AHP). Finally, four sheet metal stamping tooling (SMST) suppliers are evaluated by four specialists using the proposed evaluation framework.

Findings

The study introduces a novel classification of criteria, encompassing financial and commercial perspectives, delivery capability, supplier facility and cultural approaches and business process necessities. The findings underscore the significance of financial and commercial stability in the selection of SMST suppliers, emphasizing their role in mitigating risks associated with disruptions, bankruptcies and unforeseen events. Additionally, several SMST evaluation factors identified in this study contribute to the development of resilience capabilities, highlighting the crucial importance of their inclusion and assessment in the proposed evaluation framework.

Originality/value

This research presents a comprehensive model for evaluating SMST suppliers, which tackles the multidisciplinary challenges within the automotive supply chain. Given the inadequacy or nonexistence of current SMTS selection models, this study bridges the gap by exploring potential and necessary criteria, alongside 116 specific indicators and measurement scales.

Details

Journal of Enterprise Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 30 July 2024

Rishi Parvanda and Prateek Kala

Three-dimensional (3D) casting means using additive manufacturing (AM) techniques to print the mould for casting the cast tool. The printed mould, however, should be checked for…

Abstract

Purpose

Three-dimensional (3D) casting means using additive manufacturing (AM) techniques to print the mould for casting the cast tool. The printed mould, however, should be checked for its dimensional accuracy. 3D scanning can be used for the same. The purpose of this study is to combine the different AM techniques for 3D casting with 3D scanning to produce parts with close tolerance for preparing electrical discharge machining (EDM) electrodes.

Design/methodology/approach

The four processes, namely, stereolithography, selective laser sintering, fused deposition modelling and vacuum casting, are used to print the casting mould. The mould is designed in two halves, assembled to form a complete mould. The mould is 3D scanned in two stages: before and after using it as a casting mould. The mould's average and maximum dimensional deviations are calculated using 3D-scanned results. The eutectic Sn-Bi alloy is cast in the mould. The surface roughness of the mould and the cast tool are measured.

Findings

The cast tool is selected from the four processes in terms of dimensional accuracy and surface finish. The same is electroplated with copper. The microstructure of the cast tool (low-melting-point alloy) and deposited copper is analysed using a scanning electron microscope. Energy dispersive spectroscopy and X-ray diffraction techniques are used to verify the composition of the cast and coated alloy. The electroplated tool is finally tested on the EDM setup. The material removal rate and tool wear are measured. The performance is compared with a solid copper tool. The free-form customised EDM mould is also prepared, and the profile is cast out. The same is tested on the EDM. Thus, the developed path can be successfully used for rapid tooling applications.

Originality/value

The eutectic composition of Sn-Bi is cast in the 3D-printed mould using different AM techniques combined with 3D scanning quality to check its feasibility as an EDM electrode, which is a novel work and has not been done previously.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 July 2024

Mert Gülçür, Dmitry Isakov, Jérôme Charmet and Gregory J. Gibbons

This study aims to investigate the demoulding characteristics of material-jetted rapid mould inserts having different surface textures for micro-injection moulding using in-line…

Abstract

Purpose

This study aims to investigate the demoulding characteristics of material-jetted rapid mould inserts having different surface textures for micro-injection moulding using in-line measurements and surface metrology.

Design/methodology/approach

Material-jetted inserts with the negative cavity of a circular test product were fabricated using different surface finishes and printing configurations, including glossy, matte and vertical settings. In-line measurements included the recording of demoulding forces at 10 kHz, which was necessary to capture the highly-dynamic characteristics. A robust data processing algorithm was used to extract reliable demoulding energies per moulding run. Thermal imaging captured surface temperatures on the inserts after demoulding. Off-line measurements, including focus variation microscopy and scanning electron microscopy, compared surface textures after a total of 60 moulding runs.

Findings

A framework for capturing demoulding energies from material-jetted rapid tools was demonstrated and compared to the literature. Glossy surfaces resulted in significantly reduced demoulding forces compared to the industry standard steel moulds in the literature and their material-jetted counterparts. Minimal changes in the surface textures of the material-jetted inserts were found, which could potentially permit their prolonged usage. Significant correlations between surface temperatures and demoulding energies were demonstrated.

Originality/value

The research presented here addresses the very topical issue of demoulding characteristics of soft, rapid tools, which affect the quality of prototyped products and tool durability. This was done using state-of-the-art, high-speed sensing technologies in conjunction with surface metrology and their durability for the first time in the literature.

Details

Rapid Prototyping Journal, vol. 30 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 July 2024

Ugur Mecid Dilberoglu, Ulas Yaman and Melik Dolen

This study aims to thoroughly examine the milling process applied to fused filament fabrication (FFF) parts. The primary objective is to identify the key variables in creating…

Abstract

Purpose

This study aims to thoroughly examine the milling process applied to fused filament fabrication (FFF) parts. The primary objective is to identify the key variables in creating smooth surfaces on FFF specimens and establish trends about specific parameters.

Design/methodology/approach

In this study, PLA and ABS samples fabricated by FFF are subjected to side milling in several experiments. Achievable surface quality is studied in relation to material properties, milling parameters, tooling and macrostructure. The surface finish is quantified using profile measurements of the processed surfaces. The study classifies the created chips into categories that can be used as criteria for the anticipated quality. Spectral analysis is used to examine the various surface formation modes. Thermal monitoring is used to track chip formation and surface temperature changes during the milling process.

Findings

This study reveals that effective heat dissipation through proper chip formation is vital for maintaining high surface quality. Recommended methodology demands using a tool with a substantial flute volume, using high positive rake and clearance angles and optimizing the feed-per-tooth and cutting speed. Disregarding these guidelines may cause the surface temperature to surpass the material’s glass transition, resulting in inferior quality characterized by viscous folding. For FFF thermoplastics, optimal milling can bring the average surface roughness down to the micron level.

Originality/value

This research contributes to the field by providing valuable guidance for achieving superior results in milling FFF parts. This study includes a concise summary of the theoretically relevant insights, presents verification of the key factors by qualitative analysis and offers optimal milling parameters for 3D-printed thermoplastics based on systematic experiments.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 2 January 2024

Guillermo Guerrero-Vacas, Jaime Gómez-Castillo and Oscar Rodríguez-Alabanda

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using…

1144

Abstract

Purpose

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using fused filament fabrication (FFF) with polylactic acid (PLA) and glycol-modified polyethylene terephthalate (PETG) is proposed as an economical, simpler and faster solution compared to traditional metallic molds or three-dimensional (3D) printing with other difficult-to-print thermoplastics, which are prone to shrinkage and delamination (acrylonitrile butadiene styrene, polypropilene-PP) or high-cost due to both material and printing equipment expenses (PEEK, polyamides or polycarbonate-PC). The purpose of this study has been to evaluate the ease of release of PUR foam on these materials in combination with release agents to facilitate the mulding/demoulding process.

Design/methodology/approach

PETG, PLA and hardenable polylactic acid (PLA 3D870) have been evaluated as mold materials in combination with aqueous and solvent-based release agents within a full design of experiments by three consecutive molding/demolding cycles.

Findings

PLA 3D870 has shown the best demoldability. A mold expressly designed to manufacture a foam cushion has been printed and the prototyping has been successfully achieved. The demolding of the part has been easier using a solvent-based release agent, meanwhile the quality has been better when using a water-based one.

Originality/value

The combination of PLA 3D870 and FFF, along with solvent-free water-based release agents, presents a compelling low-cost and eco-friendly alternative to traditional metallic molds and other 3D printing thermoplastics. This innovative approach serves as a viable option for rapid tooling in PUR foam molding.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 July 2024

Md Helal Miah, Dharmahinder Singh Chand and Gurmail Singh Malhi

The pivotal aspect of aircraft assembly lies in precise measurement accuracy. While a solitary digital measuring tool suffices for analytical and small surfaces, it falls short…

Abstract

Purpose

The pivotal aspect of aircraft assembly lies in precise measurement accuracy. While a solitary digital measuring tool suffices for analytical and small surfaces, it falls short for extensive synthetic surfaces like aircraft fuselage panels and wing spars. The purpose of this study is to develop a “combined measurement method” (CMM) that enhances measurement quality and expands the evaluative scope, addressing the limitations posed by singular digital devices in meeting measurement requirements across various aircraft components.

Design/methodology/approach

The study illustrated the utilization of the CMM by combining a laser tracker and a portable arm-measuring machine. This innovative approach is tailored to address the intricate nature and substantial dimensions of aircraft fuselage panels. The portable arm-measuring machine performs precise scans of panel components, while common points recorded by the laser tracker undergo coordinate conversion to reconstruct the fuselage panel’s shape. The research outlines the CMM’s measurement procedure and scrutinizes the data processing technique. Ultimately, the investigation yields a deviation vector matrix and chromatogram deviation distribution, pivotal in achieving enhanced measurement precision for the novel CMM device.

Findings

The use of CMM noticeably enhances fuselage panel assembly accuracy, concurrently reducing assembly time and enhancing efficiency compared to conventional measurement systems.

Practical implications

The research’s practical implication lies in revolutionizing aircraft assembly by mitigating accuracy issues through the innovative digital CMM for aircraft synthetic structure type product (aircraft fuselage panel). This ensures safer flights, reduces rework and enhances overall efficiency in the aerospace industry.

Originality/value

Introducing a new aircraft assembly accuracy compensation method through digital combined measurement, pioneering improved assembly precision. Also, it enhances aerospace assembly quality, safety and efficiency, offering innovative insights for optimized aviation manufacturing processes.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 August 2024

Hulusi Delibaş and Necdet Geren

The purpose of this study is to produce a low-cost sheet metal forming mold made from the low melting point Bi58Sn42 (bismuth) alloy by using an open-source desktop-type material…

Abstract

Purpose

The purpose of this study is to produce a low-cost sheet metal forming mold made from the low melting point Bi58Sn42 (bismuth) alloy by using an open-source desktop-type material extrusion additive manufacturing system and to evaluate the performance of the additively manufactured mold for low volume sheet metal forming. Thus, it was aimed to develop a fast and inexpensive die tooling methodology for low-volume batch production.

Design/methodology/approach

Initially, the three-dimensional printing experiments were performed to produce the sheet metal forming mold. The encountered problems during the performed three-dimensional printing experiments were analyzed. Accordingly, both tunings in process parameters (extrusion temperature, extrusion multiplier, printing speed, infill percentage, etc.) and customizations on the extruder head of the available material extrusion additive manufacturing system were made to print the Bi58Sn42 alloy properly. Subsequently, the performance of the additively manufactured mold was evaluated according to the dimensional change that occurred on it during the performed pressing operations.

Findings

Results showed that the additively manufactured mold was rigid enough and proved to have sufficient strength in sheet metal forming operations for low-volume production.

Originality/value

Alternative mold production was carried out using open-source material extrusion system for low volume sheet metal part production. Thus, cost effective solution was presented for agile manufacturing.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 May 2024

Hansu Kim, Luke Crispo, Nicholas Galley, Si Mo Yeon, Yong Son and Il Yong Kim

The lightweight design of aircraft seats can significantly improve fuel efficiency and reduce greenhouse gas emissions. Metal additive manufacturing (MAM) can produce lightweight…

Abstract

Purpose

The lightweight design of aircraft seats can significantly improve fuel efficiency and reduce greenhouse gas emissions. Metal additive manufacturing (MAM) can produce lightweight topology-optimized designs with improved performance, but limited build volume restricts the printing of large components. The purpose of this paper is to design a lightweight aircraft seat leg structure using topology optimization (TO) and MAM with build volume restrictions, while satisfying structural airworthiness certification requirements.

Design/methodology/approach

TO was used to determine a lightweight conceptual design for the seat leg structure. The conceptual design was decomposed to meet the machine build volume, a detailed CAD assembly was designed and print orientation was selected for each component. Static and dynamic verification was performed, the design was updated to meet the structural requirements and a prototype was manufactured.

Findings

The final topology-optimized seat leg structure was decomposed into three parts, yielding a 57% reduction in the number of parts compared to a reference design. In addition, the design achieved an 8.5% mass reduction while satisfying structural requirements for airworthiness certification.

Originality/value

To the best of the authors’ knowledge, this study is the first paper to design an aircraft seat leg structure manufactured with MAM using a rigorous TO approach. The resultant design reduces mass and part count compared to a reference design and is verified with respect to real-world aircraft certification requirements.

Article
Publication date: 10 September 2024

Busra Ozdenizci Kose

The purpose of this study is to investigate the factors facilitating and influencing the adoption of DevOps practices specifically tailored to mobile software development, with a…

Abstract

Purpose

The purpose of this study is to investigate the factors facilitating and influencing the adoption of DevOps practices specifically tailored to mobile software development, with a focus on understanding the influence of mobile-specific requirements on DevOps integration.

Design/methodology/approach

The study employs a qualitative methodology, including a literature review, exploratory case research and partial quantitative assessments through DORA metrics and survey applications. This approach, guided by the Technology-Organization-Environment (TOE) framework, prioritizes in-depth insights into the adoption of DevOps practices and explores strategies for integrating DevOps in mobile software development.

Findings

The research identifies several key themes specific to Mobile DevOps adoption, including tool integration issues, testing complexities, deployment challenges and security concerns. These findings underscore the necessity for tailored DevOps solutions that can effectively address the unique demands of mobile software development. The study also proposes actionable strategies to overcome these challenges, thereby enhancing the efficiency, quality and security of mobile applications.

Practical implications

The insights gained from this study provide valuable guidance for practitioners in the mobile software development sector. By understanding and addressing the specific challenges of Mobile DevOps, organizations can improve their DevOps practices and achieve better outcomes in terms of project delivery speed, quality and security. For example, implementing robust testing strategies, investing in compatible tools and developing well-defined rollback procedures can significantly enhance Mobile DevOps effectiveness. Furthermore, incorporating continuous security measures and improving cross-functional collaboration can lead to more secure and efficient mobile application deployments.

Social implications

This study offers valuable starting points for researching Mobile DevOps in real-world settings, based on insights from practical DevOps implementations in a single-case organization. Organizations can use this information to compare their own DevOps approaches with those of the studied organization, and can facilitate self-assessment and improvement.

Originality/value

This study contributes to the limited literature on Mobile DevOps adoption and proposing actionable strategies. By incorporating the TOE framework, it provides a comprehensive guide that enhances understanding and management of DevOps practices throughout the mobile application development lifecycle and offers significant value to practitioners and researchers alike.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of over 12000