Search results

1 – 10 of 109
Article
Publication date: 30 October 2018

Jesús Manuel Fernandez Oro, Andrés Meana-Fernández, Monica Galdo Vega, Bruno Pereiras and José González Pérez

The purpose of this paper is the development of a CFD methodology based on LES computations to analyze the rotor–stator interaction in an axial fan stage.

Abstract

Purpose

The purpose of this paper is the development of a CFD methodology based on LES computations to analyze the rotor–stator interaction in an axial fan stage.

Design/methodology/approach

A wall-modeled large eddy simulation (WMLES) has been performed for a spanwise 3D extrusion of the central section of the fan stage. Computations were performed for three different operating conditions, from nominal (Q_N) to off-design (85 per cent Q_N and 70 per cent Q_N) working points. Circumferential periodic conditions were introduced to reduce the extent of the computational domain. The post-processing procedure enabled the segregation of unsteady deterministic features and turbulent scales. The simulations were experimentally validated using wake profiles and turbulent scales obtained from hot-wire measurements.

Findings

The transport of rotor wakes and both wake–vane and wake–wake interactions in the stator flow field have been analyzed. The description of flow separation, particularly at off-design conditions, is fully benefited from the LES performance. Rotor wakes impinging on the stator vanes generate a coherent large-scale vortex shedding at reduced frequencies. Large pressure fluctuations in the stagnation region on the leading edge of the vanes have been found.

Research limitations/implications

LES simulations have shown to be appropriate for the assessment of the design of an axial fan, especially for specific operating conditions for which a URANS model presents a lower performance for turbulence description.

Originality/value

This paper describes the development of an LES-based simulation to understand the flow mechanisms related to the rotor–stator interaction in axial fan stages.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 January 2020

Adrián Vazquez Gonzalez, Andrés Meana-Fernández and Jesús Manuel Fernández

The purpose of the paper is to quantify the impact of the non-uniform flow generated by the upstream stator on the generation and convection of the tip leakage flow (TLF…

Abstract

Purpose

The purpose of the paper is to quantify the impact of the non-uniform flow generated by the upstream stator on the generation and convection of the tip leakage flow (TLF) structures in the passages of the rotor blades in a low-speed axial fan.

Design/methodology/approach

A full three dimensional (3D)-viscous unsteady Reynolds-averaged Navier-stokes (RANS) (URANS) simulation of the flow within a periodic domain of the axial stage has been performed at three different flow rate coefficients (φ = 0.38, 0.32, 0.27) using ReNormalization Group k-ε turbulence modelling. A typical tip clearance of 2.3 per cent of the blade span has been modelled on a reduced domain comprising a three-vaned stator and a two-bladed rotor with circumferential periodicity. A non-conformal grid with hybrid meshing, locally refined O-meshes on both blades and vanes walls with (100 × 25 × 80) elements, a 15-node meshed tip gap and circumferential interfaces for sliding mesh computations were also implemented. The unsteady motion of the rotor has been covered with 60 time steps per blade event. The simulations were validated with experimental measurements of the static pressure in the shroud of the blade tip region.

Findings

It has been observed that both TLF and intensities of the tip leakage vortex (TLV) are significantly influenced by upstream stator wakes, especially at nominal and partial load conditions. In particular, the leakage flow, which represents 12.4 per cent and 11.3 per cent of the working flow rate, respectively, has shown a clear periodic fluctuation clocked with the vane passing period in the relative domain. The periodic fluctuation of the TLF is in the range of 2.8-3.4 per cent of the mean value. In addition, the trajectory of the tip vortex is also notably perturbed, with root-mean squared fluctuations reaching up to 18 per cent and 6 per cent in the regions of maximum interaction at 50 per cent and 25 per cent of the blade chord for nominal and partial load conditions, respectively. On the contrary, the massive flow separation observed in the tip region of the blades for near-stall conditions prevents the formation of TLV structures and neglects any further interaction with the upstream vanes.

Research limitations/implications

Despite the increasing use of large eddy simulation modelling in turbomachinery environments, which requires extremely high computational costs, URANS modelling is still revealed as a useful technique to describe highly complex viscous mechanisms in 3D swirl flows, such as unsteady tip flow structures, with reasonable accuracy.

Originality/value

The paper presents a validated numerical model that simulates the unsteady response of the TLF to upstream perturbations in an axial fan stage. It also provides levels of instabilities in the TLV derived from the deterministic non-uniformities associated to the vane wakes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 March 2024

Ziming Zhou, Fengnian Zhao and David Hung

Higher energy conversion efficiency of internal combustion engine can be achieved with optimal control of unsteady in-cylinder flow fields inside a direct-injection (DI) engine…

Abstract

Purpose

Higher energy conversion efficiency of internal combustion engine can be achieved with optimal control of unsteady in-cylinder flow fields inside a direct-injection (DI) engine. However, it remains a daunting task to predict the nonlinear and transient in-cylinder flow motion because they are highly complex which change both in space and time. Recently, machine learning methods have demonstrated great promises to infer relatively simple temporal flow field development. This paper aims to feature a physics-guided machine learning approach to realize high accuracy and generalization prediction for complex swirl-induced flow field motions.

Design/methodology/approach

To achieve high-fidelity time-series prediction of unsteady engine flow fields, this work features an automated machine learning framework with the following objectives: (1) The spatiotemporal physical constraint of the flow field structure is transferred to machine learning structure. (2) The ML inputs and targets are efficiently designed that ensure high model convergence with limited sets of experiments. (3) The prediction results are optimized by ensemble learning mechanism within the automated machine learning framework.

Findings

The proposed data-driven framework is proven effective in different time periods and different extent of unsteadiness of the flow dynamics, and the predicted flow fields are highly similar to the target field under various complex flow patterns. Among the described framework designs, the utilization of spatial flow field structure is the featured improvement to the time-series flow field prediction process.

Originality/value

The proposed flow field prediction framework could be generalized to different crank angle periods, cycles and swirl ratio conditions, which could greatly promote real-time flow control and reduce experiments on in-cylinder flow field measurement and diagnostics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Article
Publication date: 1 April 2005

104

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 52 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Content available
Article
Publication date: 1 April 2005

59

Abstract

Details

Pigment & Resin Technology, vol. 34 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 August 2019

Bo Zhang, Xiaoqing Qiang, Shaopeng Lu and Jinfang Teng

The purpose of this paper is to numerically investigate the effect of guide vane unsteady passing wake on the rotor blade tip aerothermal performance with different tip clearances.

Abstract

Purpose

The purpose of this paper is to numerically investigate the effect of guide vane unsteady passing wake on the rotor blade tip aerothermal performance with different tip clearances.

Design/methodology/approach

The geometry and flow conditions of the first stage of GE-E3 high-pressure turbine have been used to obtain the blade tip three-dimensional heat transfer characteristics. The first stage of GE-E3 high-pressure turbine has 46 guide vanes and 76 rotor blades, and the ratio of the vane to the blade is simplified to 38:76 to compromise the computational resources and accuracy. Namely, each computational domain comprises of one guide vane passage and two rotor blade passages. The investigations are conducted at three different tip gaps of 1.0, 1.5 and 2.0 per cent of the average blade span.

Findings

The results show that the overall discrepancy of the heat transfer coefficient between steady results and unsteady time-averaged results is quite small, but the dramatic growth of the instantaneous heat transfer coefficient along the pressure side is in excess of 20 per cent. The change of the aerothermal performance is mainly driven by turbulence-level fluctuations of the unsteady flow field within gap regions. In addition, the gap size expansion has a marginal impact on the variation ratio of tip unsteady aerothermal performances, even though it has a huge influence on the leakage flow state within the tip region.

Originality/value

This paper emphasizes the change ratio of unsteady instantaneous heat transfer characteristics and detailed the mechanism of blade tip unsteady heat transfer coefficient fluctuations, which provide some guidance for the future blade tip design and optimization.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 February 2023

Xiang Shen, Eldad Avital, Zaheer Ikram, Liming Yang, Theodosios Korakianitis and Laurent Dala

This paper aims to investigate the influence of smooth curvature distributions on the self-noise of a low Reynolds number aerofoil and to unveil the flow mechanisms in the…

Abstract

Purpose

This paper aims to investigate the influence of smooth curvature distributions on the self-noise of a low Reynolds number aerofoil and to unveil the flow mechanisms in the phenomenon.

Design/methodology/approach

In this paper, large Eddy simulation (LES) approach was performed to investigate the unsteady aerodynamic performance of both the original aerofoil E387 and the redesigned aerofoil A7 in a time-dependent study of boundary layer characteristics at Reynolds number 100,000 and angle of attack (AoA) 4-degree. The aerofoil A7 is redesigned from E387 by removing the irregularities in the surface curvature distributions and keeping a nearly identical geometry. Flow vorticity magnitude of both aerofoils, along with the spectra of the vertical fluctuating velocity component and noise level, are analysed to demonstrate the bubble flapping process near the trailing edge (TE) and the vortex shedding phenomenon.

Findings

This paper provides quantitative insights about how the flapping process of the laminar separation bubble (LSB) within the boundary layer near the TE affects the aerofoil self-noise. It is found that the aerofoil A7 with smooth curvature distributions presents a 10% smaller LSB compared to the aerofoil E387 at Reynolds number 100,000 and AoA 4-degree. The LES results also suggest that curvature distribution smoothing leads to a 6.5% reduction in overall broadband noise level.

Originality/value

This paper fulfils an identified need to reveal the unknown flow structure and the boundary layer characteristics that resulted in the self-noise reduction phenomenon yielded by curvature distribution smoothing.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 May 2021

Runqiang Zhang, Guoyong Sun, Yuchuan Wang and Sebastián Leguizamón

The study aims to display the bubbles' evolution in the shear layer and their relationship with the pressure fluctuations. Furthermore, the coherent structures of the first six…

Abstract

Purpose

The study aims to display the bubbles' evolution in the shear layer and their relationship with the pressure fluctuations. Furthermore, the coherent structures of the first six modes are extracted, in order to provide insight into their temporal and spatial evolution and determine the relationship between cavitating bubbles and coherent structures.

Design/methodology/approach

In the present study, numerical simulations of submerged jet cavitating flow were carried out at a cavitation inception condition inside an axisymmetric cavity using the large eddy simulation (LES) turbulence model and the Schnerr–Sauer (S–S) cavitation model. Based on snapshots produced by the numerical simulation, dynamic mode decomposition (DMD) was performed to extract the three-dimensional coherent structures of the first six modes in the shear layer.

Findings

The cavitating bubbles in the shear layer are deformed to elongated ellipsoid shapes by shear forces. The significant pressure fluctuations are induced by the collapse of the biggest bubble in the group. The first mode illustrates the mean characteristics of the flow field. The flow in the peripheral region of the shear layer is mainly dominated by large-scale coherent structures revealed by the second and third modes, while different small-scale coherent structures are contained in the central region. The cavitating bubbles are associated with small size coherent structures as the sixth or higher modes.

Practical implications

This work demonstrates the feasibility of LES for high Reynolds number shear layer flow. The dynamic mode decomposition method is a novel method to extract coherent structures and obtain their dynamic information that will help us to optimize and control the flow.

Originality/value

(1) This paper first displays the three-dimensional coherent structures and their characteristics in the shear layer of confined jet flow. (2) The relationship of bubbles shape and pressure fluctuations is illustrated. (3) The visualization of coherent structures benefits the understanding of the mixing process and cavitation inception in jet shear layers.

Article
Publication date: 16 March 2015

Adriana Bonilla Riaño, Antonio Carlos Bannwart and Oscar M.H. Rodriguez

The purpose of this paper is to study a multiphase-flow instrumentation for film thickness measurement, especially impedance-based, not only for gas–liquid flow but also for…

Abstract

Purpose

The purpose of this paper is to study a multiphase-flow instrumentation for film thickness measurement, especially impedance-based, not only for gas–liquid flow but also for mixtures of immiscible and more viscous substances such as oil and water. Conductance and capacitive planar sensors were compared to select the most suitable option for oil – water dispersed flow.

Design/methodology/approach

A study of techniques for measurement of film thickness in oil – water pipe flow is presented. In the first part, some measurement techniques used for the investigation of multiphase flows are described, with their advantages and disadvantages. Next, examinations of conductive and capacitive techniques with planar sensors are presented.

Findings

Film thickness measurement techniques for oil–water flow are scanty in the literature. Some techniques have been used in studies of annular flow (gas–liquid and liquid–liquid flows), but applications in other flow patterns were not encountered. The methods based on conductive or capacitive measurements and planar sensor are promising solutions for measuring time-averaged film thicknesses in oil–water flows. A capacitive system may be more appropriate for oil–water flows.

Originality/value

This paper provides a review of film thickness measurements in pipes. There are many reviews on gas – liquid flow measurement but not many about liquid – liquid flow.

Article
Publication date: 12 November 2019

Cheng Liu, Qingdong Yan and Houston G. Wood

The purpose of this paper is to study the mechanism and suppression of instabilities induced by cavitating flow around a three-dimensional hydrofoil with a particular focus on…

Abstract

Purpose

The purpose of this paper is to study the mechanism and suppression of instabilities induced by cavitating flow around a three-dimensional hydrofoil with a particular focus on cavitation control with a slot.

Design/methodology/approach

The transient cavitating flow around a Clark-Y hydrofoil was investigated using a transport-equation-based cavitation model and the stress-blended eddy simulation model was used to capture the flow turbulence. A homogeneous Rayleigh–Plesset cavitation model was used to model the transient cavitation process and the results were validated with test data. A slot was applied to the hydrofoil to suppress cavitation instabilities, and various slot widths and exit locations were applied to the blade and the cavitation behavior, as well as drag/lift forces, were simulated and compared to investigate the effects of slot geometries on cavitation suppression.

Findings

The large eddy simulation based turbulence model was able to capture the interactions between the cavitation and turbulence. Moreover, the simulation revealed that the re-entrant jet was responsible for the periodic shedding of cavities. The results indicated that a slot was able to mitigate or even suppress cavitation-induced instabilities. A jet flow was generated at the slot exit and disturbed the re-entrant jet. If the slot geometry was properly designed, the jet could block the re-entrant jet and suppress the unsteady cavitation behavior.

Originality/value

This study provides unique insights into the complicated transient cavitation flows around a three-dimensional hydrofoil and introduces an effective passive cavitation control technique useful to researchers and engineers in the areas of fluid dynamics and turbomachinery.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 109