Search results

1 – 10 of 695
Article
Publication date: 30 September 2019

W.G. Zhao and Guipeng Wang

The purpose of this paper is to use the NACA 0015 symmetric hydrofoil as the research subject and control cloud cavitation on hydrofoils.

Abstract

Purpose

The purpose of this paper is to use the NACA 0015 symmetric hydrofoil as the research subject and control cloud cavitation on hydrofoils.

Design/methodology/approach

Based on observed distribution of caudal fin spines on fish, a bionic structure of fin-like spines is arranged on the hydrofoil suction surface, which maintains the cavitation in a quasi-steady state stage by eliminating the cyclic shedding process of cloud cavitation. Based on the modified shear stress transport k-ω turbulence model and the Zwart–Gerber–Belamri cavitation model, this paper compares and analyzes the NACA 0015 hydrofoil and the bionic NACA 0015 hydrofoil under condition of an angle of attack of 8° and a cavitation number of 0.8.

Findings

The results show that the average drag of the hydrofoil is reduced but the lift is decreased, and the lift-drag ratio is increased after arranging the bionic structure. The bionic structure can effectively reduce the turbulent kinetic energy and make the flow more stable; it also can effectively control the hydrofoil surface side-entrant jet and the vortex shedding process of the near wall region.

Originality/value

Based on the above conclusions, the bionic structure of fin-like spines can achieve a significant passive control in the hydrofoil cloud cavitation process.

Details

Engineering Computations, vol. 37 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 November 2019

Cheng Liu, Qingdong Yan and Houston G. Wood

The purpose of this paper is to study the mechanism and suppression of instabilities induced by cavitating flow around a three-dimensional hydrofoil with a particular focus on…

Abstract

Purpose

The purpose of this paper is to study the mechanism and suppression of instabilities induced by cavitating flow around a three-dimensional hydrofoil with a particular focus on cavitation control with a slot.

Design/methodology/approach

The transient cavitating flow around a Clark-Y hydrofoil was investigated using a transport-equation-based cavitation model and the stress-blended eddy simulation model was used to capture the flow turbulence. A homogeneous Rayleigh–Plesset cavitation model was used to model the transient cavitation process and the results were validated with test data. A slot was applied to the hydrofoil to suppress cavitation instabilities, and various slot widths and exit locations were applied to the blade and the cavitation behavior, as well as drag/lift forces, were simulated and compared to investigate the effects of slot geometries on cavitation suppression.

Findings

The large eddy simulation based turbulence model was able to capture the interactions between the cavitation and turbulence. Moreover, the simulation revealed that the re-entrant jet was responsible for the periodic shedding of cavities. The results indicated that a slot was able to mitigate or even suppress cavitation-induced instabilities. A jet flow was generated at the slot exit and disturbed the re-entrant jet. If the slot geometry was properly designed, the jet could block the re-entrant jet and suppress the unsteady cavitation behavior.

Originality/value

This study provides unique insights into the complicated transient cavitation flows around a three-dimensional hydrofoil and introduces an effective passive cavitation control technique useful to researchers and engineers in the areas of fluid dynamics and turbomachinery.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 July 2023

Haozhe Jin, Ruoshuang Wen, Chao Wang and Xiaofei Liu

The purpose of this study is to determine the cavitation flow characteristics of the high-pressure differential control valve. The relationship between cavitation, flow…

Abstract

Purpose

The purpose of this study is to determine the cavitation flow characteristics of the high-pressure differential control valve. The relationship between cavitation, flow coefficient and spool angle is obtained. By analyzing the relationship between different spool angles and energy loss, the energy loss at different spool angles is predicted.

Design/methodology/approach

A series of numerical simulations were performed to study the cavitation problem of a high-pressure differential control valve using the RNG k–e turbulence model and the Zwart cavitation model. The flow states and energy distribution at different spool angles were analyzed under specific working conditions.

Findings

The cavitation was the weakest when the spool angle was 120° or the outlet pressure was 8 MPa. The pressure and speed fluctuations of the valve in the throttle section were greater than those at other locations. By calculating the entropy production rate, the reason and location of valve energy loss are analyzed. The energy loss near the throttling section accounts for about 92.7% of the total energy loss. According to the calculated energy loss relationship between different regions of the spool angle, the relationship between any spool angle and energy loss in the [80,120] interval is proposed.

Originality/value

This study analyzes the cavitation flow characteristics of the high-pressure differential control valve and provides the law of energy loss in the valve through the analysis method of entropy. The relationship between spool angle and energy loss under cavitation is finally proposed. The research results are expected to provide a theoretical basis for the optimal design of valves.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 October 2018

Cheng Liu, Wei Wei, Qingdong Yan, Brian K. Weaver and Houston G. Wood

The purpose of this paper is to study the transient cavitation process in torque converters with a particular focus on cavitation suppression with a passive flow control technique.

Abstract

Purpose

The purpose of this paper is to study the transient cavitation process in torque converters with a particular focus on cavitation suppression with a passive flow control technique.

Design/methodology/approach

The transient fluid field in a torque converter was simulated by RANS-based computational fluid dynamics (CFD) in a full three-dimensional (3D) model. A homogeneous Rayleigh–Plesset cavitation model was used to simulate the transient cavitation process and the results were validated with test data. Various secondary flow passages (SFP) were applied to the stator blade. The cavitation behavior and hydrodynamic performance were simulated and compared to investigate the effect of SFP geometries on cavitation suppression.

Findings

Presented results show that cavitation in the torque converter is highly unstable at stall operating condition because of the combination of a high incidence angle and high flow velocity. The addition of an SFP to the stator blade produces a disruption of the re-entrant jet and reduces the overall degree of cavitation, consequently inhibiting the unstable cavitation and reducing performance degradation.

Originality/value

This paper provides unique insights into the complicated transient cavitation flow patterns found in torque converters and introduces effective passive flow control techniques useful to researchers and engineers in the areas of fluid dynamics and turbomachinery.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 July 2021

Włodzimierz Wróblewski, Krzysztof Bochon, Mirosław Majkut, Krzysztof Rusin and Emad Hasani Malekshah

The presence of air in the water flow over the hydrofoil is investigated. The examined hydrofoil is ClarkY 11.7% with an angle of attack of 8 deg. The flow simulations are…

Abstract

Purpose

The presence of air in the water flow over the hydrofoil is investigated. The examined hydrofoil is ClarkY 11.7% with an angle of attack of 8 deg. The flow simulations are performed with the assumption of different models. The Singhal cavitation model and the models which resolve the non-condensable gas including 2phases and 3phases are implemented in the numerical model. The calculations are performed with the uRANS model with assumption of the constant temperature of the mixture. The two-phase flow is simulated with a mixture model. The dynamics and structures of cavities are compared with literature data and experimental results.

Design/methodology/approach

The cavitation regime can be observed in some working conditions of turbomachines. The phase transition, which appears on the blades, is the source of high dynamic forces, noise and also can lead to the intensive erosion of the blade surfaces. The need to control this process and to prevent or reduce the undesirable effects can be fulfilled by the application of non-condensable gases to the liquid.

Findings

The results show that the Singhal cavitation model predicts the cavity structure and related characteristics differently with 2phases and 3phases models at low cavitation number where the cavitating flow is highly dynamic. On the other hand, the impact of dissolved air on the cloud structure and dynamic characteristic of cavitating flow is gently observable.

Originality/value

The originality of this paper is the evaluation of different numerical cavitation models for the prediction of dynamic characteristics of cavitating flow in the presence of air.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 August 2013

Esko K. Juuso and Sulo Lahdelma

The purpose of this paper is to develop a comprehensive approach to efficiently integrate maintenance and operation by combining process and condition monitoring data with…

1382

Abstract

Purpose

The purpose of this paper is to develop a comprehensive approach to efficiently integrate maintenance and operation by combining process and condition monitoring data with performance measures.

Design/methodology/approach

Intelligent stress, condition and health indicators have been developed for control and condition monitoring by combining generalised moments and norms with efficient nonlinear scaling. The data analysis resulting nonlinear scaling functions can also be used to handle performance measures used for management. The generalised norms provide limits for an advanced statistical process control.

Findings

The data‐driven analysis methodology demonstrates that management‐oriented indicators can be presented in the same scale as intelligent condition and stress indices. Control, condition monitoring, maintenance and performance monitoring are represented as interactive feedback loops.

Practical implications

Performance analysis can be based on real‐time information by using various stress, condition and health indices as inputs. Similar approaches can be used for outputs: quality indices, harmonised indices, key performance indicators, process capability indices and overall equipment effectiveness. Since consistent linguistic explanations based on nonlinear scaling are available for all these indices, the analysis can be further deepened with LE modelling. Efficient monitoring with intelligent indices provides a good basis for control and condition‐based maintenance and performance monitoring.

Originality/value

The paper extends the nonlinear scaling methodology and linguistic equations to intelligent performance measures. The methodology provides a consistent way to also represent all information with linguistic terms.

Details

Journal of Quality in Maintenance Engineering, vol. 19 no. 3
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 10 July 2018

Jing Yang, Qingjuan Hu, Zhengwei Wang, Jinghuan Ding and Xianyu Jiang

For Francis turbine, the vortex flow in the draft tube plays an important role in the safe and efficient operating of hydraulic turbine. The swirling flow produced at the blade…

Abstract

Purpose

For Francis turbine, the vortex flow in the draft tube plays an important role in the safe and efficient operating of hydraulic turbine. The swirling flow produced at the blade trailing edge at off-design conditions has been proved to be the fundamental reason of the vortex flow. Exploring the swirling flow variations in the non-cavitation flow and cavitation flow field is an effective way to explain the mechanism of the complex unsteady flow in the draft tube.

Design/methodology/approach

The swirling flow in different cavitation evolution stages of varying flow rates was studied. The swirl number, which denotes the strength of the swirling flow, was chosen to systematically analyze the swirling flow changes with the cavitation evolutions. The Zwart–Gerber–Blemari cavitation model and SST turbulence model were used to simulate the two-phase cavitating flow. The finite volume method was used to discrete the equations in the unsteady flow field simulation. The Frozen Rotor Stator scheme was used to transfer the data between the rotor-stator interfaces. The inlet total pressure was set to inlet boundary condition and static pressure was set to outlet boundary condition.

Findings

The results prove that the mutual influences exist between the swirling flow and cavitation. The swirling flow was not only affected by the load but also significantly changed with the cavitation development, because the circumferential velocity decrease and axial velocity increase presented with the cavitation evolution. At the high load conditions, the system stability may improve with the decreasing swirling flow strength.

Research limitations/implications

Further experimental and simulation studies still need to verify and estimate the reasonability of the swirling flow seen as the cavitation inception signal.

Originality/value

One interesting finding is that the swirl number began to change as the inception cavitation appeared. This is meaningful for the cavitation controlling in the Francis turbine.

Details

Engineering Computations, vol. 35 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 March 2023

Xiao-Ying Li, Zhen-Tao Li, Mu-Ming Hao, Qing-Yang Wang and Zeng-Li Wang

The purpose of this paper is to investigate the hydrodynamic performance of liquid film seals with oblique grooves (OGs) and spiral grooves (SGs), considering cavitation, compare…

Abstract

Purpose

The purpose of this paper is to investigate the hydrodynamic performance of liquid film seals with oblique grooves (OGs) and spiral grooves (SGs), considering cavitation, compare and analyze the differences between them.

Design/methodology/approach

Considering cavitation effect, the incompressible steady-state Reynolds equation was solved to obtain the sealing performance parameters of the liquid film seal with oblique groove and spiral groove.

Findings

The hydrodynamic performance of oblique groove seal (OGS) and spiral groove seal (SGS) shows a similar trend with the change of operating parameters. When the groove angle is less than 20°, the load-carrying capacity of SGS is better than that of OGS, while when the groove angle continues to increase, the hydrodynamic performance of OGS is slightly better than that of SGS, and more suitable for use under small differential pressure and high speed.

Originality/value

The hydrodynamic characteristics of liquid film seals with oblique grooves and spiral grooves considering cavitation effect were studied, which provides a theoretical reference for the application of oblique groove seal.

Details

Industrial Lubrication and Tribology, vol. 75 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 July 2020

Zhentao Li, Xiaoli Yin, Jixiang Yue, Fuyu Liu, Muming Hao and Baojie Ren

The purpose of this paper is to study the effects of operating conditions including process coefficient, lubricant viscosity and cavitation pressure on the cavitation of spiral…

Abstract

Purpose

The purpose of this paper is to study the effects of operating conditions including process coefficient, lubricant viscosity and cavitation pressure on the cavitation of spiral groove liquid-film seal (SG-LFS).

Design/methodology/approach

A mathematical model of SG-LFS is established based on the JFO boundary and a relative density is introduced. The universal governing equation after a coordinate transformation is discretized by the FVM method and solved by the Gauss-Seidel relaxation scheme.

Findings

The results indicate that the two-dimensional size of cavitation and cavitation degree are affected significantly by the process coefficient and lubricant viscosity but the effect of cavitation pressure can be ignored.

Originality/value

The effect mechanisms of operating conditions on the cavitation of SG-LFS are studied by the JFO boundary and cavitation degree characterized by a relative density. The results presented are helpful to perfect and deeply understand the cavitation mechanism of liquid-film seal.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2020-0083/

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 June 2017

Lijie Yang, Shuai Yin and Qingna Niu

The purpose of this paper is to analyze the cavitation characteristics of a water hydraulic axial piston motor (WHAPM) to improve the water motor performance, to reduce the…

Abstract

Purpose

The purpose of this paper is to analyze the cavitation characteristics of a water hydraulic axial piston motor (WHAPM) to improve the water motor performance, to reduce the vibration and noise and to prolong the service life of the motor.

Design/methodology/approach

The computational fluid dynamics (CFD) software PumpLinx is chosen to do cavitation analysis of the WHAPM. In this case, first, cavitation mechanism of the water piston motor is analyzed in depth. Then, considering the effects of bubble dynamics, the rate of phase transition, turbulence effects and non-condensable gas, the full cavitation model is selected, the dynamic CFD numerical model of internal flow field on the water hydraulic piston motor is established based on PumpLinx software and the fluid cavitation inside is numerically studied. Finally, the influence of the valve plate and pistons on motor cavitation is analyzed.

Findings

Research results show that there are two serious cavitation regions: one is the pressure transition region of the valve plate that is near the top dead center, and the other is the low-pressure region of the piston that is near the low-pressure transition area. Moreover, the more serious cavitation area is on the valve plate region.

Originality/value

The simulation results show that the proposed algorithm is able to detect the cavitation characteristics of the water piston motor. Besides, it is deduced that valve-plate structure optimization is more important than pistons to reduce cavitation influence.

Details

World Journal of Engineering, vol. 14 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 695