Search results

1 – 10 of 543
Article
Publication date: 1 September 2006

Marko Hrovat, Darko Belavič, Jaroslaw Kita, Janez Holc, Silvo Drnovšek, Jena Cilenšek, Leszek Golonka and Andrzej Dziedzic

Aims to evaluate different thick‐film materials for use in strain sensors and temperature sensors on low‐temperature co‐fired ceramic (LTCC) substrates.

1393

Abstract

Purpose

Aims to evaluate different thick‐film materials for use in strain sensors and temperature sensors on low‐temperature co‐fired ceramic (LTCC) substrates.

Design/methodology/approach

LTCC materials are sintered at the low temperatures typically used for thick‐film processing, i.e. around 850°C, The thick‐film resistor materials for use as strain and temperature sensors on LTCC tapes are studied. Thick‐film piezo‐resistors in the form of strain‐gauges are realised with 10 kΩ/sq. 2041 (Du Pont)and 3414‐B (ESL), resistor materials; thick‐film temperature‐dependent resistors were made from PTC 5093 (Du Pont), and NTC‐4993 (EMCA Remex) resistor materials.

Findings

The X‐ray spectra of the 2041 and 3414‐Bb low TCR resistors after drying at 150°C and after firing display more or less the same peaks. The electrical characteristics of 2041 resistors fired on alumina and LTCC substrates are similar indicating that the resistors are compatible with the LTCC material. After firing on LTCC substrates the sheet resistivities and TCRs of the 3414‐B resistors increased. Also, there is a significant increase in the GFs from 13 to over 25.

Originality/value

Investigates the compatibility of thick‐film materials and the characteristics of the force and temperature sensors.

Details

Microelectronics International, vol. 23 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 January 1987

R. Dell'Acqua

Thick‐film technology to implement passive elements, network and hybrid circuits has been widely used for four decades and its importance is still growing. While on one hand the…

Abstract

Thick‐film technology to implement passive elements, network and hybrid circuits has been widely used for four decades and its importance is still growing. While on one hand the technology has been improved to meet the requirements for more sophisticated circuits, on the other hand a better knowledge of its outstanding properties has promoted its application to a certain number of sometimes exotic devices, many of which are in the sensor and actuator area. This paper presents examples of a variety of applications to illustrate what thick film technology can offer outside the familiar area, and to stimulate the imagination of scientists towards possible new applications.

Details

Microelectronics International, vol. 4 no. 1
Type: Research Article
ISSN: 1356-5362

Open Access
Article
Publication date: 16 July 2020

Tomasz Matusiak, Arkadiusz Dabrowski and Leszek Golonka

The purpose of this paper is to present the properties of thick-film resistors made of novel pastes prepared from glass and graphite.

1423

Abstract

Purpose

The purpose of this paper is to present the properties of thick-film resistors made of novel pastes prepared from glass and graphite.

Design/methodology/approach

Graphite-based resistors were made of thick-film pastes with different graphite-to-glass mass fraction were prepared and examined. Sheet resistance, temperature coefficient of resistance, impact of humidity and short-term overload were investigated. The properties of the layers fired in atmospheres of air at 550°C and nitrogen at 875°C were compared.

Findings

Graphite-based resistors with various graphite-to-glass ratios made possible to obtain a wide range of sheet resistance from single O/square to few kO/square. These values were dependent on firing atmosphere, paste composition and the number of screen-printed layers. The samples made of paste with 1:1 graphite-to-glass ratio exhibited the temperature coefficient of resistance of about −1,000 ppm/°C, almost independently on the firing atmosphere and presence of a top coating. The resistors fired in the air after coating with overglaze, exhibited significantly lower sheet resistance, reduced impact of humidity and improved power capabilities.

Originality/value

In this paper, graphite-based resistors for applications in typical high-temperature cermet thick-film circuits were presented, whereas typical graphite-based resistors were fabricated in polymer thick-film technology. Owing to very low cost of the graphite, the material is suitable for low-power passive circuits, where components are not subjected into high temperature, above the typical temperature of operation of standard electronic components.

Details

Circuit World, vol. 47 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 7 June 2019

Janusz Borecki, Aneta Araźna, Kamil Janeczek, Jerzy Kalenik, Michał Kalenik, Wojciech Stęplewski and Rafał Tarakowski

Nowadays, using of material properties for monitoring of phenomena occurring in the surrounding environment is very desirable. Taking into account the dynamic development of…

Abstract

Purpose

Nowadays, using of material properties for monitoring of phenomena occurring in the surrounding environment is very desirable. Taking into account the dynamic development of Internet of Things and the technological development of printed electronics, research into the using of printed electronic components for sensor applications can be one of the most prominent directions of searching for new innovative solutions. Among others, it is possible to apply them to produce the strain gauges, as well as for construction of advanced sensors for medical applications. The goal of this paper is to present the possibilities and using different constructions of embedded polymer thick-film resistors as the sensors of tension or strain.

Design/methodology/approach

The investigations were based on the polymer thick-film resistors made of carbon or carbon–silver inks printed on copper pads made on FR-4 material on two sides. The longitudinal samples laminated with resin-coated copper foil material and without lamination were bent on a strength machine. During the tests, the resistors depending on their placement were stretched or compressed. Some of the samples were also tested under high pressure. Under the influence of applied stresses, there was a reversible change in electrical resistance, which was monitored.

Findings

The study showed that the polymer thick-film resistors are characterized by a measurable piezoresistive effect. By analyzing the value of the observed resistance changes, a magnitude of strain or pressure can be worked out. During the bending, the piezoresistive effect depends on the location and orientation of the resistor. After stopping of the mechanical strains, the electrical resistance of the resistive elements does not return exactly to the initial value. This is probably related to the substrate material and the resistive paste composition. The results are very promising and further research will be done.

Originality/value

The results provided information about the piezoresistive effect of polymer thick-film resistors printed on the deformable substrate which could be interesting for engineers involved in printed sensor development dedicated for different fields of application. This phenomenon can be used to manufacturing cheap and uncomplicated sensors to monitor deformation. There are several aspects to be solved, but with the use of new types of resistive pastes and substrates, there is a potential possibility of using such resistors as sensors.

Details

Circuit World, vol. 45 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 January 1984

J.M. Kozlowski

This paper presents a computer model which describes the influence of microcracks on the temperature dependence of resistance in thick film resistors. The tunnelling barrier model…

Abstract

This paper presents a computer model which describes the influence of microcracks on the temperature dependence of resistance in thick film resistors. The tunnelling barrier model for a single particle‐barrier‐particle ‘unit cell’, proposed by Seager and Pike, is assumed. The model presented is based on an analysis of the critical percolation path that forms in the sample. It is shown that the growth in density of the microcracks induces a shift of the minimum resistance to higher temperatures, and that the value of this minimum decreases. The theoretical temperature dependences of resistance are compared with experimental data, obtained in the temperature range 295K–425K, for thick film resistors made using Du Pont 1421 and 1431 Birox resistor pastes.

Details

Microelectronics International, vol. 1 no. 4
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 1 February 1985

H. Diletti, R. Hoffmann, G. Sele and J. Rees

Applications for thin film resistor chips in thick film hybrid circuits are discussed in relation to the different technologies involved, namely naked and encapsulated forms of…

Abstract

Applications for thin film resistor chips in thick film hybrid circuits are discussed in relation to the different technologies involved, namely naked and encapsulated forms of mounting.

Details

Microelectronics International, vol. 2 no. 2
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 2 February 2018

Wojciech Stęplewski, Andrzej Dziedzic, Kamil Janeczek, Aneta Araźna, Krzysztof Lipiec, Janusz Borecki and Tomasz Serzysko

The purpose of this paper is to investigate the behavior of embedded passives under changing temperature conditions. Influence of different temperature changes on the basic…

139

Abstract

Purpose

The purpose of this paper is to investigate the behavior of embedded passives under changing temperature conditions. Influence of different temperature changes on the basic properties of embedded passives was analyzed. The main reason for these investigations was to determine functionality of passives for space application.

Design/methodology/approach

The investigations were based on the thin-film resistors made of Ni-P alloy, thick-film resistors made of carbon or carbon-silver inks, embedded capacitors made of FaradFlex materials and embedded inductor made in various configurations. Prepared samples were examined under the influence of a constant elevated temperature (100, 130 or 160°C) in a long period of time (minimum of 30 h), thermal cycles (from −40 to +85°C) or thermal shocks (from −40 to +105°C or from −40 to +125°C).

Findings

The achieved results revealed that resistance drift became bigger when the samples were treated at a higher constant temperature. At the same time, no significant difference in change in electrical properties for 50 and 100 Ω resistors was noticed. For all the tests, resistance change was below 2 per cent regardless of a value of the tested resistors. Conducted thermal shock studies indicate that thin-film resistors, coils and some thick-film resistors are characterized by minor variations in basic parameters. Some of the inks may show considerable resistance variations with temperature changes. Significant changes were also exhibited by embedded capacitors.

Originality/value

The knowledge about the behavior of the operating parameters of embedded components considering environmental conditions allow for development of more complex systems with integrated printed circuit boards.

Article
Publication date: 6 February 2017

Wojciech Steplewski, Andrzej Dziedzic, Janusz Borecki and Tomasz Serzysko

The purpose of this paper is to investigate the basic functional parameters of passive embedded components in printed circuit boards (PCBs) under environmental exposures such as…

229

Abstract

Purpose

The purpose of this paper is to investigate the basic functional parameters of passive embedded components in printed circuit boards (PCBs) under environmental exposures such as thermal-humidity and thermal exposure.

Design/methodology/approach

The investigations were based on the thin-film resistors made of NiP alloy, thick-film resistors made of carbon or carbon–silver inks, embedded capacitors made of FaradFlex materials and embedded inductor made in various configurations. The capacitors and thin- and thick-film resistors were tested in the climatic chamber in conditions of thermal-humidity exposure at 85°C and 85 per cent RH for 500 h. The embedded inductors were tested in two different environmental conditions: thermal-humidity exposure at 60°C and 95 per cent RH, and thermal exposure at 150°C and additionally at the temperature in the range of +25°C to +150°C.

Findings

Studies show that in the case of embedded capacitors, the changes caused by exposure to thermal-humidity are durable and lead to the capacity increase. The embedded thin-film resistors behave in the same manner, whereas the thick-film resistors were the least resistant to the conditions of exposure. Most of the polymer thick-film resistors have been damaged. The changes of coils' properties during aging are small, and what is most important is that, after some time of exposure, their parameters stabilize at a particular level. The changes resulting from the increase in temperature are typically related to the change of material resistance (Cu) of which coils are made, and as such, they cannot be avoided but they can be predicted.

Research limitations/implications

The realized studies allowed determination of the properties of the embedded passive elements with respect to specific environmental exposures. The studies show that embedded resistors can be used interchangeably with chip passive elements. It allows saving the area on the surface of PCB, occupied by these passive elements, for assembly of active elements integrated circuits (ICs) and thus enabling the miniaturization of electronic devices.

Originality/value

The knowledge about the behavior of the operating parameters of embedded components, considering the environmental conditions, allows for development of more complex systems with integrated PCBs.

Article
Publication date: 1 February 2016

Paweł Osypiuk, Andrzej Dziedzic and Wojciech Stęplewski

The purpose of this paper is to determine the influence of mechanical factors (such as longitudinal elongation or cyclic compressive and tensile stresses) on electrical properties…

Abstract

Purpose

The purpose of this paper is to determine the influence of mechanical factors (such as longitudinal elongation or cyclic compressive and tensile stresses) on electrical properties of thin- or thick-film resistors or conductors.

Design/methodology/approach

All test samples were made on Kapton foil. Copper foil or silver-based polymer thick-film conductive inks were used for fabrication of conductors. Resistive structures were made with the aid of two polymer thick-film resistive inks or OhmegaPly Ni-P resistive foil. Test structures differ not only in materials applied for resistors or conductors but also in geometrical shape of functional tracks (meanders consisted of many horse-shoes, semicircles, squares or triangles).

Findings

Presented results showed significant role of material on range of reversible resistance changes. But shape of test samples also affects relation between relative resistance changes and relative elongation.

Originality/value

In general, changes induced by cyclic compressive and stretching stresses were smaller than those caused by substrate elongation.

Details

Soldering & Surface Mount Technology, vol. 28 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 January 1987

N. White and A. Cranny

This paper describes the stages in the construction of sensors implemented in thick film technology. The use of CAD facilities greatly reduces the time required for development…

Abstract

This paper describes the stages in the construction of sensors implemented in thick film technology. The use of CAD facilities greatly reduces the time required for development, and automatic design rule checking minimises errors. Steps in the fabrication from layout to finished mask(s) are detailed and specific examples given. Strain gauges using piezoresistive properties of thick film resistor inks with various sheet resistivities (Du Pont HS80 series) printed on insulated stainless steel substrates were examined under strains ranging from 0 to ±1000 microstrain. Results show gauge factors to be dependent on the ink's sheet resistivity and range from 2 to 12. The temperature coefficients of resistance were determined over temperatures of +20°C to +140°C, revealing good tracking and reproducibility.

Details

Microelectronics International, vol. 4 no. 1
Type: Research Article
ISSN: 1356-5362

1 – 10 of 543