Search results

1 – 10 of 362
Article
Publication date: 25 November 2019

Shihua Lu, Jianqi Zhu, Dongyan Gao, Weiwei Chen and Xinjun Li

This study aims to show the importance of natural convection of supercritical fluid in an inclined cavity. The heat transfer performance of natural convection can be improved.

Abstract

Purpose

This study aims to show the importance of natural convection of supercritical fluid in an inclined cavity. The heat transfer performance of natural convection can be improved.

Design/methodology/approach

A model of an inclined cavity was set up to simulate the natural convection of supercritical fluid. The influence of inclined angles (30 to approximately 90°) and pressures (8 to approximately 12 MPa) are analyzed. To ascertain flow and heat transfer of supercritical fluid natural convection, this paper conducts a numerical investigation using the lattice Boltzmann method (LBM), which is proven to be precise and convenient.

Findings

The results show that the higher heat transfer performance can be obtained with an inclined angle of 30°. It is also presented that the heat transfer performance under pressure of 10 MPa is the best. In addition, common criterion number correlations of average Nusselt number are also fitted.

Originality/value

These study results can provide a theoretical reference for the study of heat transfer of supercritical fluid natural convection in engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 May 2017

Goutam Dutta and Yashasvi Giridhar

The objective of the present work is to simulate the nuclear coupled thermal–hydraulic fast transient case studies for a vertically up-flowing supercritical pressure water channel…

Abstract

Purpose

The objective of the present work is to simulate the nuclear coupled thermal–hydraulic fast transient case studies for a vertically up-flowing supercritical pressure water channel of circular cross section. The emphasis is on analyzing the phenomenon of the deterioration in heat transfer (DHT) inside the channel subjected to sharp pressure variations.

Design/methodology/approach

The thermal–hydraulic model, THRUST, is integrated with the neutron point kinetic (NPK) solver to account for the non-linear interactions between the thermal–hydraulic and neutronic temperature and density reactivity feedback effects. The model implemented and studied accounts for the time-dependent reactor power and is used to analyze various steady-state and flow-induced transient case studies (time-dependent and step change in exit pressure).

Findings

There is good agreement in the predicted behavior of the supercritical water pressure system with that of the available experimental data for the steady-state case. The event of DHT in the second transient case (step decrease in exit pressure) is found to be more severe than that of exponential pressure decrease.

Originality/value

This study evaluated a novel implementation of the thermal–hydraulic model, THRUST, integrated with NPKs applied to supercritical pressure water systems for predicting DHT.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 July 2020

Yong Li, Gongnan Xie and Bengt Ake Sunden

The purpose of this paper is to numerically study the influence of wall conduction on the heat transfer of supercritical n-decane in the active regenerative cooling channels.

Abstract

Purpose

The purpose of this paper is to numerically study the influence of wall conduction on the heat transfer of supercritical n-decane in the active regenerative cooling channels.

Design/methodology/approach

A horizontally placed rectangular pipe with a solid zone and another one without a solid zone were used. A drastic variation of thermo-physical properties was emphatically addressed. After the verification of mesh and turbulence models comparing with the experimental results, a mesh number of 4.5 M and the low Reynolds number SST k-ω turbulence model were chosen. The solution of the governing equations and the acquisition of the numerical results were executed by the commercial software FLUENT 2020 R1.

Findings

The numerical results indicate that there is a heat transfer deterioration (HTD) potential for the upper wall, lower wall and sidewall with the decrease of mass flux. Due to wall conduction, the distribution of the fluid temperature at spanwise-normal planes becomes uniform and this feature also takes advantage of the relatively uniform transverse velocity. For the streamwise-normal planes, the low fluid temperature appears close to the upper wall at the region near the sidewall and vice versa for the region near the centre. Undoubtedly, the secondary flow at the cross-section plays a crucial role in this process and the relatively cool mainstream is affected by the vortices.

Originality/value

This study warns that the wall conduction must be considered in the practical design and thermal optimization due to the sensibility of thermo-physical properties to the heat flux. The secondary flow caused by the buoyancy force (gravity) plays a significant role in the supercritical heat transfer and mixed convection heat transfer should be further studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 2005

M. Er‐raki, M. Hasnaoui, A. Amahmid and M. Bourich

Thermodiffusion or Soret effect is a phenomenon that can be encountered in many applications. However only little is known about this phenomenon, particularly in the case of…

Abstract

Purpose

Thermodiffusion or Soret effect is a phenomenon that can be encountered in many applications. However only little is known about this phenomenon, particularly in the case of sparsely packed media (i.e. Brinkman media). The aim of this paper is to study numerically and analytically the effect of thermodiffusion on the onset of natural convection in a horizontal Brinkman porous layer with a free‐stress upper boundary.

Design/methodology/approach

The study is performed by solving numerically the governing equations for different combinations of the governing parameters. An analytical solution is also developed in the case of a shallow layer using the approximation of a parallel flow in the core region to predict the critical conditions corresponding to the onset stationary, subcritical and Hopf convection.

Findings

The results obtained show that, in the presence of Soret effect, the numerical and analytical solutions agree well for long enough layers. The thermodiffusion parameter can affect considerably the supercritical and sub‐critical Rayleigh numbers and heat and mass transfer characteristics in the layer. It is also shown that the plane Le‐φ can be divided into three main regions with specific and different behaviours.

Originality/value

The Soret effect can play a stabilizing or a destabilizing role and this, depending on the sign of the separation parameter, φ.

Details

Engineering Computations, vol. 22 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 September 2017

Marcello Righi

The quality of aeroelastic predictions strongly depends on the quality of aerodynamic predictions. At the boundary of a typical flight envelope, special flow conditions may arise…

Abstract

Purpose

The quality of aeroelastic predictions strongly depends on the quality of aerodynamic predictions. At the boundary of a typical flight envelope, special flow conditions may arise, which challenge the conventional Reynolds-averaged Navier–Stokes (RANS) approach beyond reasonable limits.

Design/methodology/approach

Test Case 3 of the Second AIAA Aeroelastic Prediction Workshop is a representative test case, where the flow over a supercritical wing separates downstream of the shock waves and generates large turbulent lengthscales.

Findings

In this study, RANS predictions are compared to those obtained in this particular test case with the more sophisticated hybrid RANS–large eddy simulation (LES) approach, in particular with the Spalart–Allmaras–delayed detached eddy simulation model. Results are indeed closer to experimental data.

Originality/value

However, the costs associated with this approach are much higher. It is argued that adopting hybrid RANS–LES modelling is not a simple model switch.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 21 January 2022

Yong Li, Yingchun Zhang, Gongnan Xie and Bengt Ake Sunden

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat…

1298

Abstract

Purpose

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat transfer.

Design/methodology/approach

A brief review of current research on supercritical aviation kerosene is presented in views of the surrogate model of hydrocarbon fuels, chemical cracking mechanism of hydrocarbon fuels, thermo-physical properties of hydrocarbon fuels, turbulence models, flow characteristics and thermal performances, which indicates that more efforts need to be directed into these topics. Therefore, supercritical thermal transport of n-decane is then computationally investigated in the condition of thermal pyrolysis, while the ASPEN HYSYS gives the properties of n-decane and pyrolysis products. In addition, the one-step chemical cracking mechanism and SST k-ω turbulence model are applied with relatively high precision.

Findings

The existing surrogate models of aviation kerosene are limited to a specific scope of application and their thermo-physical properties deviate from the experimental data. The turbulence models used to implement numerical simulation should be studied to further improve the prediction accuracy. The thermal-induced acceleration is driven by the drastic density change, which is caused by the production of small molecules. The wall temperature of the combustion chamber can be effectively reduced by this behavior, i.e. the phenomenon of heat transfer deterioration can be attenuated or suppressed by thermal pyrolysis.

Originality/value

The issues in numerical studies of supercritical aviation kerosene are clearly revealed, and the conjugation mechanism between thermal pyrolysis and convective heat transfer is initially presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 May 2018

Zhenpeng He

The analysis carried out in this study can provide guidance for manufacturers and researchers to design a piston for the development of engines.

Abstract

Purpose

The analysis carried out in this study can provide guidance for manufacturers and researchers to design a piston for the development of engines.

Design/methodology/approach

Running conditions for pistons have become very severe because of the high combustion pressure and increase in piston temperature in the past 10 years. The precision of the model has a great effect on the power transmission, vibration noise emission. In this paper, the model was established with lubrication and dynamic governing equations, which were solved using finite element method coupled with Runge–Kutta method. A piston of an inline six-cylinder engine was studied, and some structural parameters were used to investigate its effect on the friction loss with lubrication and dynamic motion theory.

Findings

Based on the analyses, the effect of the friction load at the oil groove and thermal deformation of piston skirt were added to the model, and some useful information about the friction loss and dynamic characteristics were compared.

Originality/value

All the results will provide guidance for the development of the piston and reduction in the friction loss and wear.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 October 1995

P. Glaister

An algorithm based on flux difference splitting is presented for thesolution of two‐dimensional, steady, supercritical open channel flows. Atransformation maps a non‐rectangular…

Abstract

An algorithm based on flux difference splitting is presented for the solution of two‐dimensional, steady, supercritical open channel flows. A transformation maps a non‐rectangular, physical domain into a rectangular one. The governing equations are then the shallow water equations, including terms of slope and friction, in a generalised coordinate system. A regular mesh on a rectangular computational domain can then be employed. The resulting scheme has good jump capturing properties and the advantage of using boundary/body‐fitted meshes. The scheme is applied to a problem of flow in a river whose geometry induces a region of supercritical flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2016

Bengt Ake Sunden, Zan Wu and Dan Huang

The purpose of this paper is to numerically investigate the heat transfer performance of aviation kerosene flowing in smooth and enhanced tubes with asymmetric fins at…

380

Abstract

Purpose

The purpose of this paper is to numerically investigate the heat transfer performance of aviation kerosene flowing in smooth and enhanced tubes with asymmetric fins at supercritical pressures and to reveal the effects of several key parameters, such as mass flow rate, heat flux, pressure and inlet temperature on the heat transfer.

Design/methodology/approach

A CFD approach is taken and the strong variations of the thermo-physical properties as the critical point is passed are taken into account. The RNG k-ε model is applied for simulating turbulent flow conditions.

Findings

The numerical results reveal that the heat transfer coefficient increases with increasing mass flow rate and inlet temperature. The effect of heat flux on heat transfer is more complicated, while the effect of pressure on heat transfer is insignificant. The considered asymmetric fins have a small effect on the fluid temperature, but the wall temperature is reduced significantly by the asymmetric fins compared to that of the corresponding smooth tube. As a result, the asymmetric finned tube leads to a significant heat transfer enhancement (an increase in the heat transfer coefficient about 23-41 percent). The enhancement might be caused by the re-development of velocity and temperature boundary layers in the enhanced tubes. With the asymmetric fins, the pressure loss in the enhanced tubes is slightly larger than that in the smooth tube. A thermal performance factor is applied for combined evaluation of heat transfer enhancement and pressure loss.

Research limitations/implications

The asymmetric fins also caused an increased pressure loss. A thermal performance factor ? was used for combined evaluation of heat transfer enhancement and pressure loss. Results show that the two enhanced tubes perform better than the smooth tube. The enhanced tube 2 gave better overall heat transfer performance than the enhanced tube 1. It is suggested that the geometric parameters of the asymmetric fins should be optimized to further improve the thermal performance and also various structures need to be investigated.

Practical implications

The asymmetric fins increased the pressure loss. The evaluation of heat transfer enhancement and pressure loss Results showed that the two enhanced tubes perform better than the smooth tube. It is suggested that the geometric parameters of the asymmetric fins should be optimized to further improve the thermal performance and also various structures need to be investigated to make the results more engineering useful.

Originality/value

The paper presents unique solutions for thermal performance of a fluid at near critical state in smooth and enhanced tubes. The findings are of relevance for design and thermal optimization particularly in aerospace applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 March 2021

Delei Zhu and Shaoxian Bai

The purpose of this paper is to acquire sealing properties of supercritical CO2 (S-CO2) T-groove seal under ultra-high-speed conditions by thermo-elastohydrodynamic lubrication…

Abstract

Purpose

The purpose of this paper is to acquire sealing properties of supercritical CO2 (S-CO2) T-groove seal under ultra-high-speed conditions by thermo-elastohydrodynamic lubrication (TEHL) analysis.

Design/methodology/approach

Considering the choked flow effect, the finite difference method is applied to solve the gas state equation, Reynolds equation and energy equation. The temperature, pressure and viscosity distributions of the lubricating film are analyzed, and sealing characteristics is also obtained.

Findings

The face distortions induced by increasing rotational speed leads to the convergent face seal gap. When the linear velocity of rotation exceeds 400 m/s, the maximum temperature difference of the sealing film is approximately 140 K, and the viscosity of CO2 is altered by 17.80%. Near the critical temperature point of CO2, while the seal temperature increases by 50 K, the opening force of the T-groove non-contact seal enhances by 20% and the leakage rate declines by 80%.

Originality/value

The TEHL characteristics of the T-groove non-contact seal are numerically analyzed under ultra-high-speed, considering the real gas effect and choked flow effect. In the supercritical conditions, the influence of rotational speed, seal temperature, seal pressure and film thickness on sealing performance and face distortions is analyzed.

Details

Industrial Lubrication and Tribology, vol. 73 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 362