Search results

1 – 6 of 6
Article
Publication date: 9 August 2024

Juanyan Miao, Yiwen Li, Siyu Zhang, Honglei Zhao, Wenfeng Zou, Chenhe Chang and Yunlong Chang

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for…

Abstract

Purpose

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for welding technology, so the optimization and improvement of traditional welding methods become urgent needs.

Design/methodology/approach

External magnetic field assisted welding is an emerging technology in recent years, acting in a non-contact manner on the welding. The action of electromagnetic forces on the arc plasma leads to significant changes in the arc behavior, which affects the droplet transfer and molten pool formation and ultimately improve the weld seam formation and joint quality.

Findings

In this paper, different types of external magnetic fields are analyzed and summarized, which mainly include external transverse magnetic field, external longitudinal magnetic field and external cusp magnetic field. The research progress of welding behavior under the effect of external magnetic field is described, including the effect of external magnetic field on arc morphology, droplet transfer and weld seam formation law.

Originality/value

However, due to the extremely complex physical processes under the action of the external magnetic field, the mechanism of physical fields such as heat, force and electromagnetism in the welding has not been thoroughly analyzed, in-depth theoretical and numerical studies become urgent.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 July 2024

Vinodh Srinivasa Reddy, Jagan Kandasamy and Sivasankaran Sivanandam

The study aims to explore how Soret and Dufour diffusions, thermal radiation, joule heating and magnetohydrodynamics (MHD) affect the flow of hybrid nanofluid (Al2O3-SiO2/water…

34

Abstract

Purpose

The study aims to explore how Soret and Dufour diffusions, thermal radiation, joule heating and magnetohydrodynamics (MHD) affect the flow of hybrid nanofluid (Al2O3-SiO2/water) over a porous medium using a mobile slender needle.

Design/methodology/approach

To streamline the analysis, the authors apply appropriate transformations to change the governing model of partial differential equations into a group of ordinary differential equations. Following this, the authors analyze the transformed equations using the homotopy analysis method within Mathematica software, leading to the derivation of analytical solutions. This study investigates how changing values for porous medium, MHD, Soret and Dufour numbers and thermal radiation influence concentration, temperature and velocity profiles. In addition, the research assesses the effects on local Sherwood number, skin friction and Nusselt number.

Findings

In this investigation, the authors explore the movement of a needle away from its origin ( ε>0). As the magnetic and porous medium parameters increase, there is a correspondence decrease in the velocity profile. Simultaneously, an increase in the Dufour number and thermal radiation parameter yields to a higher temperature profile, whereas arise in the Soret number results in an enhanced concentration profile. Furthermore, growth in the magnetic field parameter is correlated with a reduction in skin friction, Nusselt and Sherwood numbers. In addition, an examination of the data reveals that an escalation in the thermal radiation parameter is associated with an elevation in the Nusselt number. Moreover, an elevation in the Dufour number results in an augmentation in the Nusselt number.

Practical implications

These results have practical applications across diverse fields, including heat transfer enhancement, energy conversion systems, advanced manufacturing and material processing.

Originality/value

This study is distinctive in its investigation of the flow of hybrid nanofluid (Al2O3-SiO2/water) over a slender, moving needle. The analysis includes joule heating, MHD, porous medium, thermal radiation and considering the effects of Soret and Dufour.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 July 2024

Kunal Arora, Mohit Kumar and Varun Sharma

The paper aims to fabricate shape memory composites using polylactic acid (PLA) matrix and graphite. Shape memory polymers are a promising family of materials for biomedical…

Abstract

Purpose

The paper aims to fabricate shape memory composites using polylactic acid (PLA) matrix and graphite. Shape memory polymers are a promising family of materials for biomedical applications because of their favourable mechanical properties, fast reactions and good biocompatibility. For most SMPs, however, achieving controllable sequential shape change is challenging.

Design/methodology/approach

In the present work, 4D printing technology is used to fabricate shape memory composites using polylactic acid (PLA) matrix and graphite. A comparative study of pure PLA and graphite’s different weight % composition has been done.

Findings

By carefully managing the deformation state, PLA with graphite shape memory composites produced controllable sequential deformation with an amazing shape memory effect. Surface morphology, thermal properties, melt flow index and shape recovery tests have all been carried out to assess the qualities of manufactured samples.

Originality/value

This is a one-of-a-kind to fabricate shape memory composites using graphite and a PLA matrix. Thus, this research attempts to deliver the possible use of PLA/graphite composites fabricated using 4D printing in robotics and biomedical devices.

Graphical Abstract

Details

Rapid Prototyping Journal, vol. 30 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 31 May 2024

Amanda de Oliveira e Silva, Alice Leonel, Maisa Tonon Bitti Perazzini and Hugo Perazzini

Brewer's spent grain (BSG) is the main by-product of the brewing industry, holding significant potential for biomass applications. The purpose of this paper was to determine the…

Abstract

Purpose

Brewer's spent grain (BSG) is the main by-product of the brewing industry, holding significant potential for biomass applications. The purpose of this paper was to determine the effective thermal conductivity (keff) of BSG and to develop an Artificial Neural Network (ANN) to predict keff, since this property is fundamental in the design and optimization of the thermochemical conversion processes toward the feasibility of bioenergy production.

Design/methodology/approach

The experimental determination of keff as a function of BSG particle diameter and heating rate was performed using the line heat source method. The resulting values were used as a database for training the ANN and testing five multiple linear regression models to predict keff under different conditions.

Findings

Experimental values of keff were in the range of 0.090–0.127 W m−1 K−1, typical for biomasses. The results showed that the reduction of the BSG particle diameter increases keff, and that the increase in the heating rate does not statistically affect this property. The developed neural model presented superior performance to the multiple linear regression models, accurately predicting the experimental values and new patterns not addressed in the training procedure.

Originality/value

The empirical correlations and the developed ANN can be utilized in future work. This research conducted a discussion on the practical implications of the results for biomass valorization. This subject is very scarce in the literature, and no studies related to keff of BSG were found.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

Intelligence and State Surveillance in Modern Societies
Type: Book
ISBN: 978-1-83549-098-3

Article
Publication date: 3 June 2024

Junhui Zhang, Sai Zhang, Yuhua Yang and Wendong Zhang

Based on the micro-electro-mechanical system (MEMS) technology, acoustic emission sensors have gained popularity owing to their small size, consistency, affordability and easy…

Abstract

Purpose

Based on the micro-electro-mechanical system (MEMS) technology, acoustic emission sensors have gained popularity owing to their small size, consistency, affordability and easy integration. This study aims to provide direction for the advancement of MEMS acoustic emission sensors and predict their future potential for structural health detection of microprecision instruments.

Design/methodology/approach

This paper summarizes the recent research progress of three MEMS acoustic emission sensors, compares their individual strengths and weaknesses, analyzes their research focus and predicts their development trend in the future.

Findings

Piezoresistive, piezoelectric and capacitive MEMS acoustic emission sensors are the three main streams of MEMS acoustic emission sensors, which have their own advantages and disadvantages. The existing research has not been applied in practice, and MEMS acoustic emission sensor still needs further research in the aspects of wide frequency/high sensitivity, good robustness and integration with complementary metal oxide semiconductor. MEMS acoustic emission sensor has great development potential.

Originality/value

In this paper, the existing research achievements of MEMS acoustic emission sensors are described systematically, and the further development direction of MEMS acoustic emission sensors in the future research field is pointed out. It provides an important reference value for the actual weak acoustic emission signal detection in narrow structures.

Details

Sensor Review, vol. 44 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 6 of 6