Search results

1 – 10 of 402
Article
Publication date: 31 May 2019

R. Rathinamoorthy

The purpose of this paper is to focus on the performance analysis of Polyvinylpyrrolidone (PVP) – Chitosan composite dye transfer inhibitor (DTI) for household laundry. The…

Abstract

Purpose

The purpose of this paper is to focus on the performance analysis of Polyvinylpyrrolidone (PVP) – Chitosan composite dye transfer inhibitor (DTI) for household laundry. The developed composite DTI is tested against different commercial dyes and detergent powders normally used in the household laundry for its performance.

Design/methodology/approach

The DTI article is tested for its performance against five commercial dyes and five commercial detergent compositions. The dye re-deposition behaviour of the control fabric was measured in terms of the colour difference (ΔE) values. The influence of PVP on the washing efficiency of detergent was evaluated against tea, coffee and juice stains.

Findings

The results showed that there is an excellent performance of the developed product noted in terms of DTI performance against reactive, basic and sulfur dyes. The DTI product showed a significantly (p<0.05) less performance against acid and direct dyes. There is no significant differences noted in the stain removal efficiency of the detergent in the presence of PVP in the wash liquor (p>0.05).

Originality/value

The usage of DTI polymer in the household laundry has no significant influence on the detergents performance in terms of stain removing efficiency. The DTI polymer’s function in the wash liquor depends up on the type of polymer used, as they are sensitive to the type of detergent compositions used and the type of dyes bleeds in the wash liquor.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 30 June 2021

Saira Faisal, Shenela Naqvi, Muhammad Ali and Long Lin

Among various metal oxide nano particles, MgO NPs and ZnO nanoparticles (NPs) in particular are gaining increasing attention due to their multifunctional characteristics, low cost…

Abstract

Purpose

Among various metal oxide nano particles, MgO NPs and ZnO nanoparticles (NPs) in particular are gaining increasing attention due to their multifunctional characteristics, low cost and compatibility with textile materials. Each type of nanoparticle excels over others in certain properties. As such, it is often crucial to carry out comparative studies of NPs to identify the one showing higher efficiency/output for particular applications of textile products.

Design/methodology/approach

In the investigation reported in this paper, ZnO NPs and MgO NPs were synthesised via sol-gel technique and characterised. For comparative analysis, the synthesised NPs were evaluated for multiple properties using standard procedures before and after being applied on cotton fabrics by a dip-pad-dry-cure method.

Findings

XRD and FTIR analyses confirmed the successful synthesis of ZnO and MgO NPs. Homogeneous formation of desired NPs and their dense and uniform deposition on the cotton fibre surface were observed using SEM. ZnO NPs and MgO NPs coatings on cotton were observed to significantly enhance self-cleaning/stain removal properties achieving Grade 5 and Grade 4 categories, respectively. In terms of ultraviolet (UV) protection, ZnO or MgO NP coated fabrics showed UPF values of greater than 50, i.e. excellent in blocking UV rays. MgO NPs exhibited 20% cleaning efficiency in treating reactive dye wastewater against ZnO NPs which were 4% efficient in the same treatment, so MgO was more suitable for such type of treatments at low cost. Both NPs were able to impart multifunctionality to cotton fabrics as per requirement of the end products. However, ZnO NPs were better for stain removal from the fabrics while MgO NPs were appropriate for UV blocking.

Originality/value

It was therefore clear that multifunctional textile products could be developed by employing a single type of cost effective and efficient nano particles.

Details

Pigment & Resin Technology, vol. 51 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 December 2021

Qingbin Cui and Fenjuan Shao

The intelligent identification of stains can quickly and accurately identify stains. At present, stains are identified subjectively by appearance, color, taste, feel, location…

Abstract

Purpose

The intelligent identification of stains can quickly and accurately identify stains. At present, stains are identified subjectively by appearance, color, taste, feel, location, etc. Color is an important factor in identifying stains. K/S value is used to analyze the color of textile fabric, and it has additivity. The purpose of the study is to explore its application in stain recognition is of great significance to intelligent washing.

Design/methodology/approach

A certain method used to stain the textile, then the K/S value of the textile before and after the stain was analyzed and tested by the color difference instrument. The K/S curve of the stain was calculated by the addition of K/S, and then the stain was identified and distinguished.

Findings

The K/S value of the textile stained with stains could be deducted by the K/S value of the color difference meter. After deducting the base cloth, the K/S curve of the same stain is basically the same. Then the stain can be identified and analyzed.

Research limitations/implications

The K/S value can be used for stain analysis, but it needs to be analyzed and tested in the laboratory.

Practical implications

This study provides a simple method for stains identification.

Originality/value

In addition to common methods of stain identification, such as appearance, color, feel, smell, location, stain removal materials, breaking the substrate, IR, etc., K/S value can be used for stain analysis. Identifying stains and washing them in a targeted way to achieve a better washing effect could provide certain technical support for the development of smart washing and smart home appliances.

Details

Pigment & Resin Technology, vol. 52 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 October 2022

Maryam Gholami, Amir Hossein Mahvi, Fahimeh Teimouri, Mohammad Hassan Ehrampoush, Abbasali Jafari Nodoushan, Sara Jambarsang and Mohammad Taghi Ghaneian

This paper aims to study the application of high-tolerance and flexible indigenous bacteria and fungi, along with the co-metabolism in recycled paper and cardboard mill (RPCM…

Abstract

Purpose

This paper aims to study the application of high-tolerance and flexible indigenous bacteria and fungi, along with the co-metabolism in recycled paper and cardboard mill (RPCM) wastewater treatment (WWT).

Design/methodology/approach

The molecular characterization of isolated indigenous bacteria and fungi was performed by 16S rRNA and 18S rRNA gene sequencing, respectively. Glucose was used as a cometabolic substrate to enhance the bioremediation process.

Findings

The highest removal efficiency was achieved for both chemical oxygen demand (COD) and color [78% COD and 45% color removal by Pseudomonas aeruginosa RW-2 (MZ603673), as well as approximately 70% COD and 48% color removal by Geotrichum candidum RW-4 (ON024394)]. The corresponding percentages were higher in comparison with the efficiency obtained from the oxidation ditch unit in the full-scale RPCM WWT plant.

Originality/value

Indigenous P. aeruginosa RW-2 and G. candidum RW-4 demonstrated effective capability in RPCM WWT despite the highly toxic and low biodegradable nature, especially with the assistance of glucose.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 November 2022

Eman Salim

The aim of the present paper to compare the cleaning treatments of paper samples exposed to artificial aging, toluene and isopropyl alcohol gel in cleaning wax stains.

Abstract

Purpose

The aim of the present paper to compare the cleaning treatments of paper samples exposed to artificial aging, toluene and isopropyl alcohol gel in cleaning wax stains.

Design/methodology/approach

In total, paper samples were made from wood pulp. They had a deterioration phenomenon represented in the stains of the paraffin wax, so two types of cleaning were used: A traditional method using a toluene solution and another new method using isopropanol gel by a cotton swap in a circular movement until the completion of the cleaning process. Then, all paper samples were treated with toluene and isopropanol to handle the second artificial aging and detect how the samples were affected by artificial aging. For identifying the efficacy of these materials in removing paraffin wax stains, a range of examinations and analyses were used, such as universal serial bus, scanning electron microscope, infrared analysis (IR), pH analysis, color change analysis. Moreover, these results were compared with the standard sample’s results.

Findings

The results of examinations and analyses proved that the use of toluene affected the paper samples. Their effects were twice as weak, fragile and degraded paper fibers compared to isopropanol gel. Therefore, the isopropanol gel is preferred for paper cleaning to the toluene solution.

Originality/value

This paper highlights the efficiency of isopropyl alcohol gel in cleaning wax stains from historical paper supports.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 August 2022

Eman Salim and Rushdya Rabee Ali Hassan

The main aim of this study is to study the effect of alkyl dimethyl benzyl ammonium chloride on removing stains, yellowness and harmful metal ions on historical printed paper, as…

Abstract

Purpose

The main aim of this study is to study the effect of alkyl dimethyl benzyl ammonium chloride on removing stains, yellowness and harmful metal ions on historical printed paper, as well as the effect of this cleaner on optical and chemical properties of treated paper.

Design/methodology/approach

The assessments after and before treatment were carried out using digital microscopy, infrared spectroscopy (FTIR), pH measurement, color change and finally scanning electron microscopy.

Findings

The results showed that the concentrations used under study (1% and 3%) cleaned the paper efficiently without any observed effect on the chemical composition of cellulose, which was confirmed by IR spectra. The most stains that completely disappeared were the soil spots, also the pH values had improved significantly after treatment, which confirms that the detergent is effective in neutralizing the acidity of cellulose. Moreover, the color change revealed an increase in the chromatic lightness of the paper after treatment, which agreed with the results of the scanning electron microscopy examination, as the paper appeared free of dirt, and the fibers and bundles became more cohesive.

Originality/value

To the best of the authors’ knowledge, this study is a unique study, as there is no previous literature that has indicated the use of the effect of alkyl dimethyl benzyl ammonium chloride washing treatments for printed historical paper, as it was limited only to making disinfection materials and water purification products.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 December 2022

Ufuk Yılmaz

This study aims to determine the ink removal efficiency of papers with different recycling numbers and to examine some electrophotographic printing properties.

Abstract

Purpose

This study aims to determine the ink removal efficiency of papers with different recycling numbers and to examine some electrophotographic printing properties.

Design/methodology/approach

The base papers prepared according to the INGEDE 11p standard are subjected to six recycling stages (RS) under equal conditions. The physical-optical properties of the papers obtained at the end of each RS are measured and CMYK (cyan, magenta, yellow, key) color measurement scales are printed on each paper with electrophotographic printing. Color measurements of the printed papers are measured using the X-Rite eXact spectrophotometer, adhering to the ISO 13655:2017 standard. According to the measurement results of the optical properties, the ink removal efficiency of each recycling step is determined as a percentage (%) using some formulas.

Findings

As general, according to DEMLab and IERIC data, it is determined that the ink removal efficiency increased as the recycling repetition increased. In DEMf factor values, the highest deinking efficiency is obtained after the fourth RS. There is no significant difference between the printing properties of the samples.

Originality/value

It has been a matter of curiosity that papers lose their properties after how many RS. Many studies have been carried out on this subject and it has been presented by experimental methods that the printability properties of papers increase or decrease after which RS. This study can be a pioneer for future studies.

Details

Pigment & Resin Technology, vol. 53 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 November 2021

Laila M. Elattar, Sawsan S. Darwish, Usama M. Rashed, Maha Ahmed Ali and Shaimaa M. Eldeighdye

This paper aims at examining the potentiality of using Hibiscus sabdariffa L. calyces’ (Hs) aqueous extract to remove soot stains from the surface of fire-damaged silver gelatin…

Abstract

Purpose

This paper aims at examining the potentiality of using Hibiscus sabdariffa L. calyces’ (Hs) aqueous extract to remove soot stains from the surface of fire-damaged silver gelatin prints. It further studies the cleaning efficiency and impact of both a contact method and a noncontact method with argon dielectric barrier discharge plasma (DBD Ar. plasma) on the different properties of silver gelatin prints. Accordingly, it prompts using economic, eco-friendly materials and methods in the photograph conservation field.

Design/methodology/approach

To achieve the aims of this paper, four silver gelatin prints were stained with soot and treated with the Hs aqueous extract as a contact method and DBD Ar. plasma combined with the aqueous extract as a noncontact method. The assessment was carried out using digital microscopy, atomic force microscopy and spectrophotometer to study the efficiency of the tested treatments and their impact on the surface of the photographs. Fourier transform infrared was used to monitor the state of the binder after cleaning. Furthermore, the pH and the mechanical properties were measured.

Findings

The contact method resulted in lower concentrations of Hs extract that efficiently cleaned the surface without causing any stains or damage to the treated photographs. The noncontact method (plasma with an aqueous extract) proved to be less effective in cleaning and made the binder more susceptible to deterioration.

Originality/value

This paper reveals the success of Hs aqueous extract in cleaning soot on vulnerable photographs' surfaces.

Details

Pigment & Resin Technology, vol. 52 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 September 2018

Amit Madhu and J.N. Chakraborty

Enzymatic desizing using α-amylase is the conventional and eco-friendly method of removing starch based size. Conventionally, enzymes are drained after completion of process;…

Abstract

Purpose

Enzymatic desizing using α-amylase is the conventional and eco-friendly method of removing starch based size. Conventionally, enzymes are drained after completion of process; being catalysts, they retain their activity after reaction and need to be reused. Immobilization allows the recovery of enzymes to use them as realistic biocatalyst. This study aims to recover and reuse of α-amylase for desizing of cotton via immobilization.

Design/methodology/approach

This paper investigates the application of α-amylase immobilized on Chitosan and Eudragit S-100 for cotton fabric desizing. A commercial α-amylase was immobilized on reversibly soluble-insoluble polymers to work out with inherent problems of heterogeneous reaction media. The immobilization process was optimized for maximum conjugate activity, and immobilized amylases were applied for grey cotton fabric desizing.

Findings

The desizing performance of immobilized amylases was evaluated in terms of starch removal and was compared to free enzyme. The immobilized amylases showed adequate desizing efficiency up to four cycles of use and were recovered easily at the end of each cycle. The amylase immobilized on Eudragit is more efficient for a particular concentration than chitosan.

Practical implications

Immobilization associates with insolubility and increased size of enzymes which lead to poor interactions and limited diffusion especially in textiles where enzymes have to act on macromolecular substrates (heterogeneous media). The selection of support materials plays a significant role in this constraint.

Originality/value

The commercial α-amylase was covalently immobilized on smart polymers for cotton fabric desizing. The target was to achieve immobilized amylase with maximum conjugate activity and limited constraints. The reversibly soluble-insoluble polymers support provide easy recovery with efficient desizing results in heterogeneous reaction media.

Details

Research Journal of Textile and Apparel, vol. 22 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 30 November 2023

Dong Chen, Rui Zhang and JiaCheng Jiang

This study aims to investigate the morphology and physicochemical properties of BiOBr/Polyvinylidene fluoride (PVDF) composite membranes and the differences in the properties of…

Abstract

Purpose

This study aims to investigate the morphology and physicochemical properties of BiOBr/Polyvinylidene fluoride (PVDF) composite membranes and the differences in the properties of BiOBr/PVDF composite membranes made by adding different precursor ratios during the casting process.

Design/methodology/approach

In this paper, sodium bromide and Bi(NO3)3 were used as precursors for the preparation of BiOBr photocatalysts, and PVDF membranes were modified by using the phase conversion method in conjunction with the in situ deposition method to produce BiOBr/PVDF hydrophilic composite membranes with both membrane separation and photocatalytic capabilities.

Findings

The characterization results confirmed that the composites were successfully and homogeneously co-mingled in the PVDF membranes. The related performance of the composite membrane was tested, and it was found that the composite membrane with the optimal precursor incorporation ratio had good photocatalytic efficiency and antipollution ability; the removal efficiencies of methyl orange, rhodamine B and methylene blue were 80.43%, 85.02% and 86.94%, respectively, in 2.5 h. The photocatalytic efficiency of composite membranes with different precursor ratios increased and then decreased with the increase of the precursor addition ratio.

Originality/value

The composite membrane is prepared by phase conversion method with in situ deposition method, and the BiOBr material has unique advantages for the degradation of organic dyes. The comprehensive experimental data can be known that the composite membrane prepared in this paper has high degradation efficiency and good durability for organic dyes.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 402