Search results

1 – 10 of 320
Article
Publication date: 1 June 2002

P. Vas, M. Rashed, A.K.M. Joukhadar and C.H. Ng

There are two main types of speed/position sensorless closed‐loop variable‐speed electrical drives: sensorless and quasi‐sensorless drives. In sensorless drives, the classical…

Abstract

There are two main types of speed/position sensorless closed‐loop variable‐speed electrical drives: sensorless and quasi‐sensorless drives. In sensorless drives, the classical speed and position sensors (transducers) are absent and are replaced by mathematical‐model‐based and/or artificial‐intelligence‐based estimators. In quasi‐sensorless drives, instead of conventional speed/position sensors, smart sensor bearings are used (e.g. SKF smart sensor bearings). The present paper discusses the latest developments in the field of sensorless and quasi‐sensorless variable‐speed high‐performance drives. Thus, a new family of sensorless and quasi‐sensorless induction motor and permanent magnet synchronous motor drives are also discussed (e.g. new sensorless vector and DTC drives, etc.). Methods which enable the operation of these drives at very low speed and also at zero stator frequency are discussed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 21 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 January 2015

Murat Caner, Chris Gerada and Greg Asher

The purpose of this paper is to introduce a new design optimization technique for a surface mounted permanent magnet (SMPM) machine to increase sensorless performance at high…

Abstract

Purpose

The purpose of this paper is to introduce a new design optimization technique for a surface mounted permanent magnet (SMPM) machine to increase sensorless performance at high loadings by compromising with torque capability.

Design/methodology/approach

An SMPM parametric machine model was created and analysed by finite element analysis (FEA) software by means of the Matlab environment. Eight geometric parameters of the machine were optimized using genetic algorithms (GAs). The outer volume of the machine, namely copper loss per volume, was kept constant. In order to prevent sensorless performance loss at high loading, an optimization process was realized using two loading stages: maximum torque with minimum ripple at nominal load and maximum self-sensing capability at twice load. In order to show the effectiveness of the proposed technique, the obtained results were compared with the classical one-stage optimization realized for each loading condition separately.

Findings

With the proposed technique, fairly good performance results of the optimization were obtained when compared with the one-stage optimizations. Using the proposed technique, sensorless performance of the motor was highly increased by compromising torque capability for high loading. Additionally, this paper shows that the self-sensing properties of a SMPM machine should be considered at the design stage of the machine.

Originality/value

In related literature, design optimization studies for the sensorless capability of SMPM motor are very few. By increasing optimization performance, new proposed technique provides to achieve good result at high load for sensorless performance compromising torque capability.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2002

P. Vas, M. Rashed, A.K.M. Joukhadar and C.H. Ng

The present paper will discuss newly developed fully digital sensorless induction motor and permanent magnet motor synchronous motor drives, which employ natural field orientation…

Abstract

The present paper will discuss newly developed fully digital sensorless induction motor and permanent magnet motor synchronous motor drives, which employ natural field orientation (NFO). So far only vector‐type of NFO induction motor drives have been discussed in the literature, and very limited experimental results have been shown. In addition, the paper will also discuss new sensorless DTC‐type of NFO induction motor drives (NFO‐DTC drives). Using fully digital implementations of the new NFO‐type induction motor and permanent magnet drives, experimental results will be shown for various operating conditions, including slow and fast reversals at very low speed. Robustness to parameter deviations will also be demonstrated. The developed new types of NFO drives can also work at zero stator frequency and sustained zero frequency operation will also be demonstrated. The drives have been tested in basically two environments: where the load is a dc motor; and where a crane drive is implemented. In contrast to other sensorless crane drives, which develop stability problems, it was found that the new NFO drives can operate in a stable manner under all operating conditions including zero frequency. This allows for many new applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 21 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 May 2020

Feng Dong, Hao Chen, Shuai Xu and Sihang Cui

This paper aims to present a novel position sensorless control scheme with fault-tolerance ability for switched reluctance motor at low speed.

Abstract

Purpose

This paper aims to present a novel position sensorless control scheme with fault-tolerance ability for switched reluctance motor at low speed.

Design/methodology/approach

First, the detection pulses are injected in the freewheeling and idle intervals of each phase. Second, the aligned position of each phase can be detected by comparing the consecutive rise time of detection current. Third, the whole-region rotor position and real-time rotational speed can be updated four times for the improvement of detection accuracy. Finally, the fault-tolerant control strategy is performed to enhance the robustness and reliability of proposed sensorless scheme under faulty conditions.

Findings

Based on proposed sensorless control strategy, the estimated rotor position is in good agreement with the actual rotor position and the maximum rotor position error is 1.5°. Meanwhile, the proposed sensorless scheme is still effective when the motor with multiphase loss and the maximum rotor position error is 1.9°. Moreover, the accuracy of the rotor position estimation can be ensured even if the motor is in an accelerated state or decelerated state.

Originality/value

The proposed sensorless method does not require extensive memory, complicated computation and prior knowledge of the electromagnetic properties of the motor, which is easy to implement. Furthermore, it is suitable for different control strategies at low speed without negative torque generation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 July 2019

Yong Li, Yanjun Huang and Xing Xu

Sensorless interior permanent magnet in-wheel motor (IPMIWM), as an exemplar of modular automation system, has attracted considerable interests in recent years. This paper aims to…

152

Abstract

Purpose

Sensorless interior permanent magnet in-wheel motor (IPMIWM), as an exemplar of modular automation system, has attracted considerable interests in recent years. This paper aims to investigate a novel hybrid control approach for the sensorless IPMIWM from a cyber-physical systems (CPS) perspective.

Design/methodology/approach

The control approach is presented based on the hybrid dynamical theory. In the standstill-low (S-L) speed, the rotor position/speed signal is estimated by the method of the high frequency (HF) voltage signal injection. The least square support vector machine (LS-SVM) is used to acquire the rotor position/speed signal in medium-high (M-H) speed operation. Hybrid automata model of the IPMIWM is established due to its hybrid dynamic characteristics in wide speed range. A hybrid state observer (HSO), including a discrete state observer (DSO) and a continuous state observer (CSO), is designed for rotor position/speed estimation of the IPMIWM.

Findings

The hardware-in-the-loop testing based on dSPACE is carried out on the test bench. Experimental investigations demonstrate the hybrid control approach can not only identify the rotor position/speed signal with a certain load but also be able to reject the load disturbance. The reliability and the effectiveness of the proposed hybrid control approach were verified.

Originality/value

The proposed hybrid control approach for the sensorless IPMIWM promotes the deep combination and coordination of sensorless IPMIWM drive system. It also theoretically supports and extends the development of the hybrid control of the highly integrated modular automation system.

Article
Publication date: 1 January 2013

Piotr Kołodziejek

The aim of this paper is to undertake analysis and comparison of the closed‐loop and sensorless control systems sensitivity to the broken rotor for diagnostic purposes. For the…

Abstract

Purpose

The aim of this paper is to undertake analysis and comparison of the closed‐loop and sensorless control systems sensitivity to the broken rotor for diagnostic purposes. For the same vector control system induction motor drive analysis concerning operation with the asymmetric motor, broken rotor fault handling and operation were investigated. Reliability, range of stable operation, fault symptoms and application of diagnosis methods based on control system variables utilization was analyzed.

Design/methodology/approach

Induction motor drive vector control system synthesis was applied using the multiscalar variables of the machine model with nonlinear feedback linearization applied to use classical cascaded PI controllers for the speed‐torque and flux decoupled control. Speed observer was applied for the rotor flux and rotor speed estimation for the sensorless control system synthesis.

Findings

Relative sensitivity of the state and control system variables to broken rotor fault based on experimental results for the closed‐loop and sensorless control systems is presented and compared. Drawbacks of using the MCSA analysis for the rotor fault diagnosis in the closed‐loop and sensorless control systems are pointed. Advantages and drawbacks of the state space estimators filtering characteristics in the sensorless control system are described.

Practical implications

Asymmetric IM motor drive handling and diagnosis. Broken rotor range diagnosis inconsistency using the popular MCSA method should be considered in the closed‐loop and sensorless control system of the induction motor drive. Depending on the IM motor drive application and the operation requirements the results can be used for asymmetric machine proper handling, choosing proper control system structure and control system variables for rotor fault early diagnosis.

Originality/value

Sensitivity of the state and control system variables to broken rotor fault based on experimental results for the closed‐loop and sensorless control systems is presented, which implies motor handling procedures and fault diagnosis.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Ali Almarhoon, Yuan Ren and Z.Q. Zhu

The purpose of this paper is to investigate the influence of back-EMF and current harmonics on position and speed estimation accuracy for single and dual three-phase (DTP…

Abstract

Purpose

The purpose of this paper is to investigate the influence of back-EMF and current harmonics on position and speed estimation accuracy for single and dual three-phase (DTP) permanent magnet synchronous machines (PMSMs) with two fundamental-model-based sensorless control strategies which are widely utilized for AC machines, i.e. flux-linkage observer (FO) and simplified extended Kalman filter (EKF).

Design/methodology/approach

The effect of distorted back-EMF is studied for sensorless vector control of single three-phase PMSM. For the influence of current harmonics, unlike the existing literature where the current harmonics are deliberately injected, in this paper, sensorless switching-table-based direct torque control (ST-DTC) strategies for DTP-PMSM which inherently suffer from non-sinusoidal stator currents in addition to the distorted back-EMF, are investigated experimentally.

Findings

By employing the FO and simplified EKF-based sensorless vector control of single three-phase PMSM, it can be concluded that the rotor position estimation accuracy is less affected by the back-EMF harmonics when the simplified EKF method is utilized since it is less sensitive to such noises. When the influence of non-sinusoidal stator currents together with back-EMF harmonics is investigated for the conventional and modified ST-DTC of DTP-PMSM, it is indicated that the simplified EKF exhibits better position and speed estimation accuracy in both the conventional and modified ST-DTC strategies. In addition, its steady-state performance shows a slight superiority over that based on FO, in terms of flux and torque ripples, and THD of phase currents. For the dynamic performance, the estimated speed of simplified EKF shows less phase lag and fluctuations compared to that of FO.

Originality/value

This paper introduces the influence of back-EMF and current harmonics on sensorless control performance for single and DTP PMSMs. Detailed experimental results show that the simplified EKF exhibits better rotor position and speed estimation accuracy compared to that of FO due to its higher noise-rejection ability.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 May 2009

Piotr Kołodziejek and Elżbieta Bogalecka

The purpose of this paper is analysis of the sensorless control system of induction machine with broken rotor for diagnostic purposes. Increasing popularity of sensorless

Abstract

Purpose

The purpose of this paper is analysis of the sensorless control system of induction machine with broken rotor for diagnostic purposes. Increasing popularity of sensorless controlled variable speed drives requires research in area of reliability, range of stable operation, fault symptoms and application of diagnosis methods.

Design/methodology/approach

T transformation used for conversion of instantaneous rotor currents electrical circuit representation to space vector components is investigated to apply with closed‐loop modeling algorithm. Evaluation of the algorithm is based on analysis of asymmetry influence to the orthogonal and zero components of space vector representation. Multiscalar model of the machine and selected structures of state observers are used for sensorless control system synthesis. Proposed method of frequency characteristics calculation is used for state observers analysis in open‐loop operation.

Findings

New algorithm of applying the T transformation allows for closed‐loop and sensorless control system simulation with asymmetric machine due to broken rotor. Compensating effect of the closed‐loop control system with speed measurements and diagnosis information in control system variables are identified. Proposed frequency analysis of state observers is presented and applied. Variables with amplified characteristic frequency components related to rotor asymmetry are compared for selected structures of state observers and with closed‐loop and open‐loop operation. Method of improving the sensorless system stability is proposed.

Practical implications

In closed‐loop and sensorless control system rotor fault can be diagnosed by using PI output controllers variables. Compensating effect of mechanical variables sets limitation to specified diagnosis methods. Rotor asymmetry affects sensorless control system stability depending on estimator structure.

Originality/value

This paper concentrates upon sensorless control system operation with machine asymmetry and indicates rotor fault symptoms.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 May 2022

Hao Lu, Shengquan Li, Bo Feng and Juan Li

This paper mainly aims to deal with the problems of uncertainties including modelling errors, unknown dynamics and disturbances caused by load mutation in control of permanent…

Abstract

Purpose

This paper mainly aims to deal with the problems of uncertainties including modelling errors, unknown dynamics and disturbances caused by load mutation in control of permanent magnet synchronous motor (PMSM).

Design/methodology/approach

This paper proposes an enhanced speed sensorless vector control method based on an active disturbance rejection controller (ADRC) for a PMSM. First, a state space model of the PMSM is obtained for the field orientation control strategy. Second, a sliding mode observer (SMO) based on back electromotive force (EMF) is introduced to replace the encode to estimate the rotor flux position angle and speed. Third, an infinite impulse response (IIR) filter is introduced to eliminate high frequency noise mixed in the output of the sliding mode observer. In addition, a speed control method based on an extended state observer (ESO) is proposed to estimate and compensate for the total disturbances. Finally, an experimental set-up is built to verify the effectiveness and superiority of the proposed ADRC-based control method.

Findings

The comparative experimental results show that the proposed speed sensorless control method with the IIR filter can achieve excellent robustness and speed tracking performance for PMSM system.

Research limitations/implications

An enhanced sensorless control method based on active disturbance rejection controller is designed to realize high precision control of the PMSM; the IIR filter is used to attenuate the chattering problem of traditional SMO; this method simplifies the system and saves the total cost due to the speed sensorless technology.

Practical implications

The use of sensorless can reduce costs and be more beneficial to actual industrial application.

Originality/value

The proposed enhanced speed sensorless vector control method based on an ADRC with the IIR filter enriches the control method of PMSM. It can ameliorate system robustness and achieve excellent speed tracking performance.

Article
Publication date: 1 January 2012

Piotr Kołodziejek and Elżbieta Bogalecka

The purpose of this paper is to investigate the need for a universal method for sensorless controlled induction motor drive diagnosis. The increasing number of sensorless control…

Abstract

Purpose

The purpose of this paper is to investigate the need for a universal method for sensorless controlled induction motor drive diagnosis. The increasing number of sensorless control systems in industrial applications require a universal method for the drive diagnosis, which provides reliable diagnostic reasoning independent of control system structure and state variables measurement or estimation method.

Design/methodology/approach

Simulations and experimental investigation has been done with assumptions of multiscalar control system as a generalized vector control method, voltage source inverter application, sensorless control system based on selected speed observer structure and squirrel cage induction motor. Broken rotor symptoms are analyzed in the state variables and control system variables using DSP processing without outside measurement devices.

Findings

Symptoms of rotor asymmetry caused by broken rotor in the state and control variables was identified and symptoms amplitudes were compared. Based on the simulation and experimental results a new diagnosis method was proposed.

Practical implications

For early broken rotor detection there is a need to identify variables most sensitive to rotor asymmetry. In closed‐loop operation broken rotor symptom signals amplitudes are changed due to control system influence and in sensorless control due to used estimator frequency characteristics. The proposed method assumption is to aggregate symptoms in variables that altogether give results for broken rotor range regardless of applied control system structure or state variable estimator.

Originality/value

This paper shows control system influence to rotor fault symptom amplitudes in the state and control system variables. Identified phenomena is used for a new diagnosis method development.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 320