Search results

1 – 10 of 14
Open Access
Article
Publication date: 31 December 2011

Jung Taik Hyun and Jin Young Hong

In this paper, we examine the comparative advantage of Korea and China while focusing on their technology level. The three digit SITC (Standard International Trade Classification…

Abstract

In this paper, we examine the comparative advantage of Korea and China while focusing on their technology level. The three digit SITC (Standard International Trade Classification) data is classified by technology level and the revealed comparative advantage (RCA) is derived from 1992-2009 by using UN COMTRADE data. For careful interpretation of the comparative advantage and technology levels, we also examined intra-industry trade and unit values of bilateral Korea-China trade, and semi-conductor industry technology. We found that the revealed comparative advantage has moved from low technology products to high technology products in Korea. China still maintains a comparative advantage in low technology products such as textiles and clothing, but at the same time, China’s high and medium-high technology products have recently gained a comparative advantage. The perception that China only has a comparative advantage for labor intensive products with low technology should be changed based on our analysis. However, China’s advancement in technology should not be overestimated. When comparing the unit value of basic materials of Korea’s and China’s exports, we found that Korea’s export product prices are on average higher than that of China’s, although the gap is reducing. A wider technology gap between Korea and China still exists in the semi-conductor industry, which is one of the most advanced high technology industries throughout the world.

Details

Journal of International Logistics and Trade, vol. 9 no. 2
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 22 September 2023

Nengsheng Bao, Yuchen Fan, Chaoping Li and Alessandro Simeone

Lubricating oil leakage is a common issue in thermal power plant operation sites, requiring prompt equipment maintenance. The real-time detection of leakage occurrences could…

Abstract

Purpose

Lubricating oil leakage is a common issue in thermal power plant operation sites, requiring prompt equipment maintenance. The real-time detection of leakage occurrences could avoid disruptive consequences caused by the lack of timely maintenance. Currently, inspection operations are mostly carried out manually, resulting in time-consuming processes prone to health and safety hazards. To overcome such issues, this paper proposes a machine vision-based inspection system aimed at automating the oil leakage detection for improving the maintenance procedures.

Design/methodology/approach

The approach aims at developing a novel modular-structured automatic inspection system. The image acquisition module collects digital images along a predefined inspection path using a dual-light (i.e. ultraviolet and blue light) illumination system, deploying the fluorescence of the lubricating oil while suppressing unwanted background noise. The image processing module is designed to detect the oil leakage within the digital images minimizing detection errors. A case study is reported to validate the industrial suitability of the proposed inspection system.

Findings

On-site experimental results demonstrate the capabilities to complete the automatic inspection procedures of the tested industrial equipment by achieving an oil leakage detection accuracy up to 99.13%.

Practical implications

The proposed inspection system can be adopted in industrial context to detect lubricant leakage ensuring the equipment and the operators safety.

Originality/value

The proposed inspection system adopts a computer vision approach, which deploys the combination of two separate sources of light, to boost the detection capabilities, enabling the application for a variety of particularly hard-to-inspect industrial contexts.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

Open Access
Article
Publication date: 9 April 2018

Maheshwaran Gopalakrishnan and Anders Skoogh

The purpose of this paper is to identify the productivity improvement potentials from maintenance planning practices in manufacturing companies. In particular, the paper aims at…

5454

Abstract

Purpose

The purpose of this paper is to identify the productivity improvement potentials from maintenance planning practices in manufacturing companies. In particular, the paper aims at understanding the connection between machine criticality assessment and maintenance prioritization in industrial practice, as well as providing the improvement potentials.

Design/methodology/approach

An explanatory mixed method research design was used in this study. Data from literature analysis, a web-based questionnaire survey, and semi-structured interviews were gathered and triangulated. Additionally, simulation experimentation was used to evaluate the productivity potential.

Findings

The connection between machine criticality and maintenance prioritization is assessed in an industrial set-up. The empirical findings show that maintenance prioritization is not based on machine criticality, as criticality assessment is non-factual, static, and lacks system view. It is with respect to these finding that the ways to increase system productivity and future directions are charted.

Originality/value

In addition to the empirical results showing productivity improvement potentials, the paper emphasizes on the need for a systems view for solving maintenance problems, i.e. solving maintenance problems for the whole factory. This contribution is equally important for both industry and academics, as the maintenance organization needs to solve this problem with the help of the right decision support.

Details

International Journal of Productivity and Performance Management, vol. 67 no. 4
Type: Research Article
ISSN: 1741-0401

Keywords

Open Access
Article
Publication date: 13 November 2023

Ming Gao, Anhui Pan, Yi Huang, Jiaqi Wang, Yan Zhang, Xiao Xie, Huanre Han and Yinghua Jia

The type 120 emergency valve is an essential braking component of railway freight trains, but corresponding diaphragms consisting of natural rubber (NR) and chloroprene rubber…

Abstract

Purpose

The type 120 emergency valve is an essential braking component of railway freight trains, but corresponding diaphragms consisting of natural rubber (NR) and chloroprene rubber (CR) exhibit insufficient aging resistance and low-temperature resistance, respectively. In order to develop type 120 emergency valve rubber diaphragms with long-life and high-performance, low-temperatureresistant CR and NR were processed.

Design/methodology/approach

The physical properties of the low-temperature-resistant CR and NR were tested by low-temperature stretching, dynamic mechanical analysis, differential scanning calorimetry and thermogravimetric analysis. Single-valve and single-vehicle tests of type 120 emergency valves were carried out for emergency diaphragms consisting of NR and CR.

Findings

The low-temperature-resistant CR and NR exhibited excellent physical properties. The elasticity and low-temperature resistance of NR were superior to those of CR, whereas the mechanical properties of the two rubbers were similar in the temperature range of 0 °C–150 °C. The NR and CR emergency diaphragms met the requirements of the single-valve test. In the low-temperature single-vehicle test, only the low-temperature sensitivity test of the NR emergency diaphragm met the requirements.

Originality/value

The innovation of this study is that it provides valuable data and experience for future development of type 120 valve rubber diaphragms.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Book part
Publication date: 4 May 2018

Sulhatun, Rosdanelly Hasibuan, Hamidah Harahap, Iriani and Herman Fithra

Purpose – The purpose of this research is to study the process conditions that give best yield and expected compositions of liquid smoke products that result during the pyrolisis…

Abstract

Purpose – The purpose of this research is to study the process conditions that give best yield and expected compositions of liquid smoke products that result during the pyrolisis process relying on predetermined variables.

Design/Methodology/Approach – Pyrolisis process running times are varied, that is, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, and 6 hourly. Condensing temperature maintained remained 25–30 °C. Products identification was applied by using gas chromotography mass spectroscopy.

Findings – Based on the research output, it was concluded that process conditions which give maximum yield were achieved when using double unit condenser (DUC) and time optional four hours, and it provides maximum volume liquid smoke product, and compositions of pyrolisis products. The process also created seven components, namely nepthalene, propanoic acid, 3,7 nanodiena, 2 metilguaiakol, 2-metoksi 4-methyl phenol, 4 ethyl-2 metoksil phenol, oxybanzene. Applying DUC during condensation phase may increase condensing force thereafter obtaining resulted products between 200% and 300% rather than using single unit condenser (SUC).

Research Limitations/Implications – This research was conducted on a fixed batch reactor made of a metal plate with a thickness of 3.0 mm. It carries 200 kg in capacity. In this phase, the moisture of candlenut shells might be kept in 10–12.5% wt. Process temperature applied ranged within 350–500 °C.

Originality/Value – In addition the study increased the theorical of understanding about pyrolisis process and Improving the production of liquid smoke from candlenut shell by pyrolisis process using the method of vapor condensation (Double unit condensor).

Open Access
Article
Publication date: 25 July 2019

Pathavee Waewwab, Sungsit Sungvornyothin, Kamolnetr Okanurak, Ngamphol Soonthornworasiri, Rutcharin Potiwat and Chadchalerm Raksakoon

The purpose of this paper is to investigate the influence of breeding containers on the production of Aedes mosquitoes after a vector-control program in households that might…

1871

Abstract

Purpose

The purpose of this paper is to investigate the influence of breeding containers on the production of Aedes mosquitoes after a vector-control program in households that might support dengue transmission in tourist attraction areas of Bang Kachao Riverbend, Thailand.

Design/methodology/approach

A cross-sectional study was conducted in an ecotourism area of Bang Kachao Riverbend, Thailand, during the period October 2016 to September 2017. A total of 832 households from five villages participated in the study. Data collection employed an interview questionnaire, larval mosquito survey and measurements of the chemical properties of the water in each container. A binary logistic regression model was used to investigate the characteristics of water containers influencing the presence or absence of Aedes immatures.

Findings

The study found that water containers located inside households had a highly presence of Aedes immatures (2.22 times) compared with outdoor containers. Water containers without lids and water containers with ineffective had a high presence of Aedes immatures (3.69 and 2.54 times, respectively). In addition, the chemical properties of the water inside the containers, such as pH, influenced the presence of Aedes immatures (1.76 times) (OR=1.76, 95% CI=1.59–1.96).

Originality/value

The study results emphasized the characteristics of water containers in households located in a tourist attraction area. The findings may inform public health vector-control messages for households located in the tourist attraction area.

Details

Journal of Health Research, vol. 33 no. 5
Type: Research Article
ISSN: 2586-940X

Keywords

Open Access
Article
Publication date: 7 July 2023

Marcello Braglia, Francesco Di Paco, Marco Frosolini and Leonardo Marrazzini

This paper presents Quick Changeover Design (QCD), which is a structured methodological approach for Original Equipment Manufacturers to drive and support the design of machines…

1370

Abstract

Purpose

This paper presents Quick Changeover Design (QCD), which is a structured methodological approach for Original Equipment Manufacturers to drive and support the design of machines in terms of rapid changeover capability.

Design/methodology/approach

To improve the performance in terms of set up time, QCD addresses machine design from a single-minute digit exchange of die (SMED). Although conceived to aid the design of completely new machines, QCD can be adapted to support for simple design upgrades on pre-existing machines. The QCD is structured in three consecutive steps, each supported by specific tools and analysis forms to facilitate and better structure the designers' activities.

Findings

QCD helps equipment manufacturers to understand the current and future needs of the manufacturers' customers to: (1) anticipate the requirements for new and different set-up process; (2) prioritize the possible technical solutions; (3) build machines and equipment that are easy and fast to set-up under variable contexts. When applied to a production system consisting of machines subject to frequent or time-consuming set-up processes, QCD enhances both responsiveness to external market demands and internal control of factory operations.

Originality/value

The QCD approach is a support system for the development of completely new machines and is also particularly effective in upgrading existing ones. QCD's practical application is demonstrated using a case study concerning a vertical spindle machine.

Details

Journal of Manufacturing Technology Management, vol. 34 no. 9
Type: Research Article
ISSN: 1741-038X

Keywords

Open Access
Article
Publication date: 10 December 2021

Pingan Zhu, Chao Zhang and Jun Zou

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the…

Abstract

Purpose

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the area of manufacturing.

Design/methodology/approach

No methodology was used because the paper is a review article.

Findings

no fundings.

Originality/value

Herein, the historical development, main strengths and measurement setup of DIC are introduced. Subsequently, the basic principles of the DIC technique are outlined in detail. The analysis of measurement accuracy associated with experimental factors and correlation algorithms is discussed and some useful recommendations for reducing measurement errors are also offered. Then, the utilization of DIC in different manufacturing fields (e.g. cutting, welding, forming and additive manufacturing) is summarized. Finally, the current challenges and prospects of DIC in intelligent manufacturing are discussed.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 2 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 31 October 2023

Alberto Giubilini and Paolo Minetola

The purpose of this study is to evaluate the 3D printability of a multimaterial, fully self-supporting auxetic structure. This will contribute to expanding the application of…

Abstract

Purpose

The purpose of this study is to evaluate the 3D printability of a multimaterial, fully self-supporting auxetic structure. This will contribute to expanding the application of additive manufacturing (AM) to new products, such as automotive suspensions.

Design/methodology/approach

An experimental approach for sample fabrication on a multiextruder 3D printer and characterization by compression testing was conducted along with numerical simulations, which were used to support the design of different auxetic configurations for the jounce bumper.

Findings

The effect of stacking different auxetic cell modules was discussed, and the findings demonstrated that a one-piece printed structure has a better performance than one composed of multiple single modules stacked on top of each other.

Research limitations/implications

The quality of the 3D printing process affected the performance of the final components and reproducibility of the results. Therefore, researchers are encouraged to further study component fabrication optimization to achieve a more reliable process.

Practical implications

This research work can help improve the manufacturing and functionality of a critical element of automotive suspension systems, such as the jounce bumper, which can efficiently reduce noise, vibration and harshness by absorbing impact energy.

Originality/value

In previous research, auxetic structures for the application of jounce bumpers have already been suggested. However, to the best of the authors’ knowledge, in this work, an AM approach was used for the first time to fabricate multimaterial auxetic structures, not only by co-printing a flexible thermoplastic polymer with a stiffer one but also by continuously extruding multilevel structures of auxetic cell modules.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 6 March 2024

Chuloh Jung, Muhammad Azzam Ismail, Mohammad Arar and Nahla AlQassimi

This study aims to evaluate the efficiency of various techniques for enhancing indoor air quality (IAQ) in construction. It analyzed the alterations in the concentration of indoor…

Abstract

Purpose

This study aims to evaluate the efficiency of various techniques for enhancing indoor air quality (IAQ) in construction. It analyzed the alterations in the concentration of indoor air pollutants over time for each product employed in controlling pollution sources and removing it, which included eco-friendly substances and adsorbents. The study will provide more precise and dependable data on the effectiveness of these control methods, ultimately supporting the creation of more efficient and sustainable approaches for managing indoor air pollution in buildings.

Design/methodology/approach

The research investigates the impact of eco-friendly materials and adsorbents on improving indoor air quality (IAQ) in Dubai's tall apartment buildings. Field experiments were conducted in six units of The Gate Tower, comparing the IAQ of three units built with “excellent” grade eco-friendly materials with three built with “good” grade materials. Another experiment evaluated two adsorbent products (H and Z) in the Majestic Tower over six months. Results indicate that “excellent” grade materials significantly reduced toluene emissions. Adsorbent product Z showed promising results in pollutant reduction, but there is concern about the long-term behavior of adsorbed chemicals. The study emphasizes further research on household pollutant management.

Findings

The research studied the effects of eco-friendly materials and adsorbents on indoor air quality in Dubai's new apartments. It found that apartments using “excellent” eco-friendly materials had significantly better air quality, particularly reduced toluene concentrations, compared to those using “good” materials. However, high formaldehyde (HCHO) emissions were observed from wood products. While certain construction materials led to increased ethylbenzene and xylene levels, adsorbent product Z showed promise in reducing pollutants. Yet, there is a potential concern about the long-term rerelease of these trapped chemicals. The study emphasizes the need for ongoing research in indoor pollutant management.

Research limitations/implications

The research, while extensive, faced limitations in assessing the long-term behavior of adsorbed chemicals, particularly the potential for rereleasing trapped pollutants over time. Despite the study spanning a considerable period, indoor air pollutant concentrations in target households did not stabilize, making it challenging to determine definitive improvement effects and reduction rates among products. Comparisons were primarily relative between target units, and the rapid rise in pollutants during furniture introduction warrants further examination. Consequently, while the research provides essential insights, it underscores the need for more prolonged and comprehensive evaluations to fully understand the materials' and adsorbents' impacts on indoor air quality.

Practical implications

The research underscores the importance of choosing eco-friendly materials in new apartment constructions for better IAQ. Specifically, using “excellent” graded materials can significantly reduce harmful pollutants like toluene. However, the study also highlights that certain construction activities, such as introducing furniture, can rapidly elevate pollutant levels. Moreover, while adsorbents like product Z showed promise in reducing pollutants, there is potential for adsorbed chemicals to be rereleased over time. For practical implementation, prioritizing higher-grade eco-friendly materials and further investigation into furniture emissions and long-term behavior of adsorbents can lead to healthier indoor environments in newly built apartments.

Originality/value

The research offers a unique empirical assessment of eco-friendly materials' impact on indoor air quality within Dubai's rapidly constructed apartment buildings. Through field experiments, it directly compares different material grades, providing concrete data on pollutant levels in newly built environments. Additionally, it explores the efficacy of specific adsorbents, which is of high value to the construction and public health sectors. The findings shed light on how construction choices can influence indoor air pollution, offering valuable insights to builders, policymakers and residents aiming to promote public health and safety in urban living spaces.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Access

Only Open Access

Year

All dates (14)

Content type

1 – 10 of 14