Search results

1 – 10 of 33
Article
Publication date: 29 March 2024

Jianping Zhang, Leilei Wang and Guodong Wang

With the rapid advancement in the automotive industry, the friction coefficient (FC), wear rate (WR) and weight loss (WL) have emerged as crucial parameters to measure the…

33

Abstract

Purpose

With the rapid advancement in the automotive industry, the friction coefficient (FC), wear rate (WR) and weight loss (WL) have emerged as crucial parameters to measure the performance of automotive braking systems, so the FC, WR and WL of friction material are predicted and analyzed in this work, with an aim of achieving accurate prediction of friction material properties.

Design/methodology/approach

Genetic algorithm support vector machine (GA-SVM) model is obtained by applying GA to optimize the SVM in this work, thus establishing a prediction model for friction material properties and achieving the predictive and comparative analysis of friction material properties. The process parameters are analyzed by using response surface methodology (RSM) and GA-RSM to determine them for optimal friction performance.

Findings

The results indicate that the GA-SVM prediction model has the smallest error for FC, WR and WL, showing that it owns excellent prediction accuracy. The predicted values obtained by response surface analysis are closed to those of GA-SVM model, providing further evidence of the validity and the rationality of the established prediction model.

Originality/value

The relevant results can serve as a valuable theoretical foundation for the preparation of friction material in engineering practice.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 September 2023

Jianxiang Qiu, Jialiang Xie, Dongxiao Zhang and Ruping Zhang

Twin support vector machine (TSVM) is an effective machine learning technique. However, the TSVM model does not consider the influence of different data samples on the optimal…

Abstract

Purpose

Twin support vector machine (TSVM) is an effective machine learning technique. However, the TSVM model does not consider the influence of different data samples on the optimal hyperplane, which results in its sensitivity to noise. To solve this problem, this study proposes a twin support vector machine model based on fuzzy systems (FSTSVM).

Design/methodology/approach

This study designs an effective fuzzy membership assignment strategy based on fuzzy systems. It describes the relationship between the three inputs and the fuzzy membership of the sample by defining fuzzy inference rules and then exports the fuzzy membership of the sample. Combining this strategy with TSVM, the FSTSVM is proposed. Moreover, to speed up the model training, this study employs a coordinate descent strategy with shrinking by active set. To evaluate the performance of FSTSVM, this study conducts experiments designed on artificial data sets and UCI data sets.

Findings

The experimental results affirm the effectiveness of FSTSVM in addressing binary classification problems with noise, demonstrating its superior robustness and generalization performance compared to existing learning models. This can be attributed to the proposed fuzzy membership assignment strategy based on fuzzy systems, which effectively mitigates the adverse effects of noise.

Originality/value

This study designs a fuzzy membership assignment strategy based on fuzzy systems that effectively reduces the negative impact caused by noise and then proposes the noise-robust FSTSVM model. Moreover, the model employs a coordinate descent strategy with shrinking by active set to accelerate the training speed of the model.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 30 April 2024

Niharika Varshney, Srikant Gupta and Aquil Ahmed

This study aims to address the inherent uncertainties within closed-loop supply chain (CLSC) networks through the application of a multi-objective approach, specifically focusing…

Abstract

Purpose

This study aims to address the inherent uncertainties within closed-loop supply chain (CLSC) networks through the application of a multi-objective approach, specifically focusing on the optimization of integrated production and transportation processes. The primary purpose is to enhance decision-making in supply chain management by formulating a robust multi-objective model.

Design/methodology/approach

In dealing with uncertainty, this study uses Pythagorean fuzzy numbers (PFNs) to effectively represent and quantify uncertainties associated with various parameters within the CLSC network. The proposed model is solved using Pythagorean hesitant fuzzy programming, presenting a comprehensive and innovative methodology designed explicitly for handling uncertainties inherent in CLSC contexts.

Findings

The research findings highlight the effectiveness and reliability of the proposed framework for addressing uncertainties within CLSC networks. Through a comparative analysis with other established approaches, the model demonstrates its robustness, showcasing its potential to make informed and resilient decisions in supply chain management.

Research limitations/implications

This study successfully addressed uncertainty in CLSC networks, providing logistics managers with a robust decision-making framework. Emphasizing the importance of PFNs and Pythagorean hesitant fuzzy programming, the research offered practical insights for optimizing transportation routes and resource allocation. Future research could explore dynamic factors in CLSCs, integrate real-time data and leverage emerging technologies for more agile and sustainable supply chain management.

Originality/value

This research contributes significantly to the field by introducing a novel and comprehensive methodology for managing uncertainty in CLSC networks. The adoption of PFNs and Pythagorean hesitant fuzzy programming offers an original and valuable approach to addressing uncertainties, providing practitioners and decision-makers with insights to make informed and resilient decisions in supply chain management.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 25 December 2023

Ran Wang, Yunbao Xu and Qinwen Yang

This paper intends to construct a new adaptive grey seasonal model (AGSM) to promote the application of the grey forecasting model in quarterly GDP.

Abstract

Purpose

This paper intends to construct a new adaptive grey seasonal model (AGSM) to promote the application of the grey forecasting model in quarterly GDP.

Design/methodology/approach

Firstly, this paper constructs a new accumulation operation that embodies the new information priority by using a hyperparameter. Then, a new AGSM is constructed by using a new grey action quantity, nonlinear Bernoulli operator, discretization operation, moving average trend elimination method and the proposed new accumulation operation. Subsequently, the marine predators algorithm is used to quickly obtain the hyperparameters used to build the AGSM. Finally, comparative analysis experiments and ablation experiments based on China's quarterly GDP confirm the validity of the proposed model.

Findings

AGSM can be degraded to some classical grey prediction models by replacing its own structural parameters. The proposed accumulation operation satisfies the new information priority rule. In the comparative analysis experiments, AGSM shows better prediction performance than other competitive algorithms, and the proposed accumulation operation is also better than the existing accumulation operations. Ablation experiments show that each component in the AGSM is effective in enhancing the predictive performance of the model.

Originality/value

A new AGSM with new information priority accumulation operation is proposed.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 27 September 2023

Myongjee Yoo, Ashok K. Singh and Noah Loewy

The purpose of this study is to develop a model that accurately forecasts hotel room cancelations and further determines the key cancelation drivers.

Abstract

Purpose

The purpose of this study is to develop a model that accurately forecasts hotel room cancelations and further determines the key cancelation drivers.

Design/methodology/approach

Predictive modeling, specifically the machine learning methods, is used to forecast room cancelations and identify the main cancelation factors.

Findings

By using three different classification algorithms, this study demonstrates that hotel room cancelation can be accurately predicted using XGBoost, as well as the ensemble method involving Support Vector Machine, Random Forest and XGBoost.

Originality/value

This study attempted to forecast hotel room cancelations by applying a relatively new method, machine learning. By implementing predictive modeling, one of the most emerging and innovative research methods, this study ultimately provides prediction suggestions in various aspects and levels for hotel management operations.

研究目的

本研究旨在开发一个能够准确预测酒店客房取消的模型, 并进一步确定主要的取消因素。

研究方法

采用预测建模, 具体来说是机器学习方法, 来预测客房取消, 并识别主要的取消因素。

研究发现

通过使用三种不同的分类算法, 本研究表明使用XGBoost以及涉及支持向量机、随机森林和XGBoost的集成方法可以准确预测酒店客房取消。

研究创新

本研究尝试通过应用相对较新的方法, 即机器学习, 来预测酒店客房取消。通过实施预测建模, 这是目前新兴和创新的研究方法之一, 本研究最终为酒店管理运营在各个方面和层面提供了预测建议。

Details

Journal of Hospitality and Tourism Technology, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9880

Keywords

Article
Publication date: 12 October 2023

Zhuyue Li and Chunxiao Zhang

Supply chain risk management can effectively reduce the loss of retailers. In this regard, retailers need to consider the competition risks of competitors in addition to the…

Abstract

Purpose

Supply chain risk management can effectively reduce the loss of retailers. In this regard, retailers need to consider the competition risks of competitors in addition to the disruption risks. This paper designs a resilient retail supply chain network for perishable foods under the dynamic competition to maximize retailer's profits.

Design/methodology/approach

A two-stage mixed-integer non-linear model is presented for designing the supply chain network. In the first stage, an equilibrium model that considers the characteristics of perishable foods is developed. In the second stage, a mixed integer non-linear programming model is presented to deal with the strategic decisions. Finally, an efficient memetic algorithm is designed to deal with large-scale problems.

Findings

The optimal the selection of suppliers, distribution centers and the order allocation are found among the supply chain entities. Considering the perishability of agri-food products, the equilibrium retail price and selling quantity are determined. Through a numerical example, the optimal inventory period under different maximum shelf life and the impact of three resilient strategies on retailer's profit, selling price and selling quantity are analyzed.

Research limitations/implications

As for future research, the research can be extended in a number of directions. First, this paper studies the retail supply chain network design problem under competition among retailers. It can be an interesting direction to consider retailers competing with suppliers. Second, the authors can try to linearize the non-linear model and solve the large-scale integer programming problem by exact algorithm. Finally, the freshness of perishable foods gradually declines linearly to zero as the maximum shelf life approaches, and it would be a meaningful attempt to consider the freshness of perishable foods declines exponentially.

Originality/value

This paper innovatively designs the resilient supply chain network for perishable foods under dynamic competition. The retailer's dynamic competition and resilient strategies are considered simultaneously when designing supply chain network for perishable foods. In addition, this paper gives insights into how to obtain the optimal inventory period and compare the retailer's resilient strategies.

Article
Publication date: 3 April 2024

Rizwan Ali, Jin Xu, Mushahid Hussain Baig, Hafiz Saif Ur Rehman, Muhammad Waqas Aslam and Kaleem Ullah Qasim

This study aims to endeavour to decode artificial intelligence (AI)-based tokens' complex dynamics and predictability using a comprehensive multivariate framework that integrates…

Abstract

Purpose

This study aims to endeavour to decode artificial intelligence (AI)-based tokens' complex dynamics and predictability using a comprehensive multivariate framework that integrates technical and macroeconomic indicators.

Design/methodology/approach

In this study we used advance machine learning techniques, such as gradient boosting regression (GBR), random forest (RF) and notably long short-term memory (LSTM) networks, this research provides a nuanced understanding of the factors driving the performance of AI tokens. The study’s comparative analysis highlights the superior predictive capabilities of LSTM models, as evidenced by their performance across various AI digital tokens such as AGIX-singularity-NET, Cortex and numeraire NMR.

Findings

This study finding shows that through an intricate exploration of feature importance and the impact of speculative behaviour, the research elucidates the long-term patterns and resilience of AI-based tokens against economic shifts. The SHapley Additive exPlanations (SHAP) analysis results show that technical and some macroeconomic factors play a dominant role in price production. It also examines the potential of these models for strategic investment and hedging, underscoring their relevance in an increasingly digital economy.

Originality/value

According to our knowledge, the absence of AI research frameworks for forecasting and modelling current aria-leading AI tokens is apparent. Due to a lack of study on understanding the relationship between the AI token market and other factors, forecasting is outstandingly demanding. This study provides a robust predictive framework to accurately identify the changing trends of AI tokens within a multivariate context and fill the gaps in existing research. We can investigate detailed predictive analytics with the help of modern AI algorithms and correct model interpretation to elaborate on the behaviour patterns of developing decentralised digital AI-based token prices.

Details

Journal of Economic Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3585

Keywords

Article
Publication date: 24 November 2023

Yuling Ran, Wei Bai, Lingwei Kong, Henghui Fan, Xiujuan Yang and Xuemei Li

The purpose of this paper is to develop an appropriate machine learning model for predicting soil compaction degree while also examining the contribution rates of three…

Abstract

Purpose

The purpose of this paper is to develop an appropriate machine learning model for predicting soil compaction degree while also examining the contribution rates of three influential factors: moisture content, electrical conductivity and temperature, towards the prediction of soil compaction degree.

Design/methodology/approach

Taking fine-grained soil A and B as the research object, this paper utilized the laboratory test data, including compaction parameter (moisture content), electrical parameter (electrical conductivity) and temperature, to predict soil degree of compaction based on five types of commonly used machine learning models (19 models in total). According to the prediction results, these models were preliminarily compared and further evaluated.

Findings

The Gaussian process regression model has a good effect on the prediction of degree of compaction of the two kinds of soils: the error rates of the prediction of degree of compaction for fine-grained soil A and B are within 6 and 8%, respectively. As per the order, the contribution rates manifest as: moisture content > electrical conductivity >> temperature.

Originality/value

By using moisture content, electrical conductivity, temperature to predict the compaction degree directly, the predicted value of the compaction degree can be obtained with higher accuracy and the detection efficiency of the compaction degree can be improved.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 February 2023

Meriem Laifa and Djamila Mohdeb

This study provides an overview of the application of sentiment analysis (SA) in exploring social movements (SMs). It also compares different models for a SA task of Algerian…

Abstract

Purpose

This study provides an overview of the application of sentiment analysis (SA) in exploring social movements (SMs). It also compares different models for a SA task of Algerian Arabic tweets related to early days of the Algerian SM, called Hirak.

Design/methodology/approach

Related tweets were retrieved using relevant hashtags followed by multiple data cleaning procedures. Foundational machine learning methods such as Naive Bayes, Support Vector Machine, Logistic Regression (LR) and Decision Tree were implemented. For each classifier, two feature extraction techniques were used and compared, namely Bag of Words and Term Frequency–Inverse Document Frequency. Moreover, three fine-tuned pretrained transformers AraBERT and DziriBERT and the multilingual transformer XLM-R were used for the comparison.

Findings

The findings of this paper emphasize the vital role social media played during the Hirak. Results revealed that most individuals had a positive attitude toward the Hirak. Moreover, the presented experiments provided important insights into the possible use of both basic machine learning and transfer learning models to analyze SA of Algerian text datasets. When comparing machine learning models with transformers in terms of accuracy, precision, recall and F1-score, the results are fairly similar, with LR outperforming all models with a 68 per cent accuracy rate.

Originality/value

At the time of writing, the Algerian SM was not thoroughly investigated or discussed in the Computer Science literature. This analysis makes a limited but unique contribution to understanding the Algerian Hirak using artificial intelligence. This study proposes what it considers to be a unique basis for comprehending this event with the goal of generating a foundation for future studies by comparing different SA techniques on a low-resource language.

Details

Data Technologies and Applications, vol. 57 no. 5
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 1 November 2023

Hao Xiang

It is of a great significance for the health monitoring of a liquid rocket engine to build an accurate and reliable fault prediction model. The thrust of a liquid rocket engine is…

Abstract

Purpose

It is of a great significance for the health monitoring of a liquid rocket engine to build an accurate and reliable fault prediction model. The thrust of a liquid rocket engine is an important indicator for its health monitoring. By predicting the changing value of the thrust, it can be judged whether the engine will fail at a certain time. However, the thrust is affected by various factors, and it is difficult to establish an accurate mathematical model. Thus, this study uses a mixture non-parametric regression prediction model to establish the model of the thrust for the health monitoring of a liquid rocket engine.

Design/methodology/approach

This study analyzes the characteristics of the least squares support vector regression (LS-SVR) machine . LS-SVR is suitable to model on the small samples and high dimensional data, but the performance of LS-SVR is greatly affected by its key parameters. Thus, this study implements the advanced intelligent algorithm, the real double-chain coding target gradient quantum genetic algorithm (DCQGA), to optimize these parameters, and the regression prediction model LSSVRDCQGA is proposed. Then the proposed model is used to model the thrust of a liquid rocket engine.

Findings

The simulation results show that: the average relative error (ARE) on the test samples is 0.37% when using LS-SVR, but it is 0.3186% when using LSSVRDCQGA on the same samples.

Practical implications

The proposed model of LSSVRDCQGA in this study is effective to the fault prediction on the small sample and multidimensional data, and has a certain promotion.

Originality/value

The original contribution of this study is to establish a mixture non-parametric regression prediction model of LSSVRDCQGA and properly resolve the problem of the health monitoring of a liquid rocket engine along with modeling the thrust of the engine by using LSSVRDCQGA.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

1 – 10 of 33