Search results

1 – 10 of 389
Article
Publication date: 21 December 2023

Nagat Zalhaf, Mariam Ghazy, Metwali Abdelatty and Mohamed Hamed Zakaria

Even though it is widely used, reinforced concrete (RC) is susceptible to damage from various environmental factors. The hazard of a fire attack is particularly severe because it…

Abstract

Purpose

Even though it is widely used, reinforced concrete (RC) is susceptible to damage from various environmental factors. The hazard of a fire attack is particularly severe because it may cause the whole structure to collapse. Furthermore, repairing and strengthening existing structures with high-performance concrete (HPC) has become essential from both technical and financial points of view. In particular, studying the postfire behavior of HPC with normal strength concrete substrate requires experimental and numerical investigations. Accordingly, this study aims to numerically investigate the post-fire behavior of reinforced composite RC slabs.

Design/methodology/approach

Consequently, in this study, a numerical analysis was carried out to ascertain the flexural behavior of simply supported RC slabs strengthened with HPC and exposed to a particularly high temperature of 600°C for 2 h. This behavior was investigated and analyzed in the presence of a number of parameters, such as HPC types (fiber-reinforced, 0.5% steel, polypropylene fibers [PPF], hybrid fibers), strengthening side (tension or compression), strengthening layer thickness, slab thickness, boundary conditions, reinforcement ratio and yield strength of reinforcement.

Findings

The results showed that traction-separation and full-bond models can achieve accuracy compared with experimental results. Also, the fiber type significantly affects the postfire performance of RC slab strengthened with HPC, where the inclusion of hybrid fiber recorded the highest ultimate load. While adding PPF to HPC showed a rapid decrease in the load-deflection curve after reaching the ultimate load.

Originality/value

The proposed model accurately predicted the thermomechanical behavior of RC slabs strengthened with HPC after being exposed to the fire regarding load-deflection response, crack pattern and failure mode. Moreover, the considered independent parametric variables significantly affect the composite slabs’ behavior.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 May 2024

Jiahao Jiang, Jinliang Liu, Shuolei Cao, Sheng Cao, Rui Dong and Yusen Wu

The purpose of this study is to use the corrected stress field theory to derive the shear capacity of geopolymer concrete beams (GPC) and consider the shear-span ratio as a major…

Abstract

Purpose

The purpose of this study is to use the corrected stress field theory to derive the shear capacity of geopolymer concrete beams (GPC) and consider the shear-span ratio as a major factor affecting the shear capacity. This research aims to provide guidance for studying the shear capacity of GPC and to observe how the failure modes of beams change with the variation of the shear-span ratio, thereby discovering underlying patterns.

Design/methodology/approach

Three test beams with shear span ratios of 1.5, 2.0 and 2.5 are investigated in this paper. For GPC beams with shear-span ratios of 1.5, 2.0 and 2.5, ultimate capacities are 337kN, 235kN and 195kN, respectively. Transitioning from 1.5 to 2.0 results in a 30% decrease in capacity, a reduction of 102kN. Moving from 2.0 to 2.5 sees a 17% decrease, with a loss of 40KN in capacity. A shear capacity formula, derived from modified compression field theory and considering concrete shear strength, stirrups and aggregate interlocking force, was validated through finite element modeling. Additionally, models with shear ratios of 1 and 3 were created to observe crack propagation patterns.

Findings

For GPC beams with shear-span ratios of 1.5, 2.0 and 2.5, ultimate capacities of 337KN, 235KN and 195KN are achieved, respectively. A reduction in capacity of 102KN occurs when transitioning from 1.5 to 2.0 and a decrease of 40KN is observed when moving from 2.0 to 2.5. The average test-to-theory ratio, at 1.015 with a variance of 0.001, demonstrates strong agreement. ABAQUS models beams with ratios ranging from 1.0 to 3.0, revealing crack trends indicative of reduced crack angles with higher ratios. The failure mode observed in the models aligns with experimental results.

Originality/value

This article provides a reference for the shear bearing capacity formula of geopolymer reinforced concrete (GRC) beams, addressing the limited research in this area. Additionally, an exponential model incorporating the shear-span ratio as a variable was employed to calculate the shear capacity, based on previous studies. Moreover, the analysis of shear capacity results integrated literature from prior research. By fitting previous experimental data to the proposed formula, the accuracy of this study's derived formula was further validated, with theoretical values aligning well with experimental results. Additionally, guidance is offered for utilizing ABAQUS in simulating the failure process of GRC beams.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 27 November 2023

Maha Assad, Rami Hawileh, Ghada Karaki, Jamal Abdalla and M.Z. Naser

This research paper aims to investigate reinforced concrete (RC) walls' behaviour under fire and identify the thermal and mechanical factors that affect their performance.

Abstract

Purpose

This research paper aims to investigate reinforced concrete (RC) walls' behaviour under fire and identify the thermal and mechanical factors that affect their performance.

Design/methodology/approach

A three-dimensional (3D) finite element (FE) model is developed to predict the response of RC walls under fire and is validated through experimental tests on RC wall specimens subjected to fire conditions. The numerical model incorporates temperature-dependent properties of the constituent materials. Moreover, the validated model was used in a parametric study to inspect the effect of the fire scenario, reinforcement concrete cover, reinforcement ratio and configuration, and wall thickness on the thermal and structural behaviour of the walls subjected to fire.

Findings

The developed 3D FE model successfully predicted the response of experimentally tested RC walls under fire conditions. Results showed that the fire resistance of the walls was highly compromised under hydrocarbon fire. In addition, the minimum wall thickness specified by EC2 may not be sufficient to achieve the desired fire resistance under considered fire scenarios.

Originality/value

There is limited research on the performance of RC walls exposed to fire scenarios. The study contributed to the current state-of-the-art research on the behaviour of RC walls of different concrete types exposed to fire loading, and it also identified the factors affecting the fire resistance of RC walls. This guides the consideration and optimisation of design parameters to improve RC walls performance in the event of a fire.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 March 2024

Maria Ghannoum, Joseph Assaad, Michel Daaboul and Abdulkader El-Mir

The use of waste polyethylene terephthalate (PET) plastics derived from shredded bottles in concrete is not formalized yet, especially in reinforced members such as beams and…

Abstract

Purpose

The use of waste polyethylene terephthalate (PET) plastics derived from shredded bottles in concrete is not formalized yet, especially in reinforced members such as beams and columns. The disposal of plastic wastes in concrete is a viable alternative to manage those wastes while minimizing the environmental impacts associated to recycling, carbon dioxide emissions and energy consumption.

Design/methodology/approach

This paper evaluates the suitability of 2D deterministic and stochastic finite element (FE) modeling to predict the shear strength behavior of reinforced concrete (RC) beams without stirrups. Different concrete mixtures prepared with 1.5%–4.5% PET additions, by volume, are investigated.

Findings

Test results showed that the deterministic and stochastic FE approaches are accurate to assess the maximum load of RC beams at failure and corresponding midspan deflection. However, the crack patterns observed experimentally during the different stages of loading can only be reproduced using the stochastic FE approach. This later method accounts for the concrete heterogeneity due to PET additions, allowing a statistical simulation of the effect of mechanical properties (i.e. compressive strength, tensile strength and Young’s modulus) on the output FE parameters.

Originality/value

Data presented in this paper can be of interest to civil and structural engineers, aiming to predict the failure mechanisms of RC beams containing plastic wastes, while minimizing the experimental time and resources needed to estimate the variability effect of concrete properties on the performance of such structures.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 16 May 2024

Mugahed Amran

The initiative for sustainability in the construction industry has led to the innovative utilization of automobile tire waste, transforming it into value-added products, toward…

Abstract

Purpose

The initiative for sustainability in the construction industry has led to the innovative utilization of automobile tire waste, transforming it into value-added products, toward decarbonization in the construction industry, aligning with the development and sustainability goals of Al-Kharj Governorate. However, the disposal of these materials generates significant environmental concerns. As a payoff for these efforts, this study aims to contribute to a fruitful shift toward eco-friendly recycling techniques, particularly by studying the transformation of tire waste bead wires into recycled steel tire fibers (RSTFs) for sustainable concrete composites.

Design/methodology/approach

This research delves into how this technological transformation not only addresses environmental concerns but also propels sustainable tire innovation forward, presenting a promising solution for waste management and material efficiency in building materials. Recent studies have highlighted the superior tensile strength of RSTFs from discarded tires, making them suitable for various structural engineering applications. Recently, there has been a notable shift in research focus to the use of RSTFs as an alternative to traditional fibers in concrete. In this study, however, efforts have paid off in outlining a comprehensive assessment to investigate the viability and efficacy of repurposing tire bead wires into RSTFs for use in concrete composites, as reported in the literature.

Findings

This study examined the Saudi waste management, the geometrical properties of RSTFs, and their impact on the strength properties of concrete microstructure. It also examined the economic, cost, and environmental impacts of RSTFs on concrete composites, underscoring the need for the construction industry to adopt more sustainable and adaptable practices. Furthermore, the main findings of this study are proposed insights and a blueprint for the construction industry in Al-Kharj Governorate, calling for collective action from both public and private sectors, and the community to transform challenges into job opportunities for growth and sustainability.

Originality/value

This study pointed to thoroughly demonstrate the technological advancement in converting tire waste to reinforcing fibers by evaluating the effectiveness, environmental sustainability, and practicality of these fibers in eco-friendly concrete composites. Besides, the desired properties and standards for RSTFs to enhance the structural integrity of concrete composites are recommended, as is the need to establish protocols and further study into the long-term efficacy of RSTF-reinforced concrete composites.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 14 December 2023

Prathamesh Gaikwad and Sandeep Sathe

The purpose of this paper is to study and analyze the effects of fly ash (FA) as a mineral admixture on compressive strength (CS), carbonation resistance and corrosion resistance…

Abstract

Purpose

The purpose of this paper is to study and analyze the effects of fly ash (FA) as a mineral admixture on compressive strength (CS), carbonation resistance and corrosion resistance of reinforced concrete (RC). In addition, the utilization of inexpensive and abundantly available FA as a cement replacement in concrete has several benefits including reduced OPC usage and elimination of the FA disposal problem.

Design/methodology/approach

Reinforcement corrosion and carbonation significantly affect the strength and durability of the RC structures. Also, the utilization of FA as green corrosion inhibitors, which are nontoxic and environmentally friendly alternatives. This review discusses the effects of FA on the mechanical characteristics of concrete. Also, this review analyzes the impact of FA as a partial replacement of cement in concrete and its effect on the depth of carbonation in concrete elements and the corrosion rate of embedded steel as well as the chemical composition and microstructure (X-ray diffraction analysis and scanning electron microscopy) of FA concrete were also reviewed.

Findings

This review provides a clear analysis of the available study, providing a thorough overview of the current state of knowledge on this topic. Regarding concrete CS, the findings indicate that the incorporation of FA often leads to a loss in early-age strength. However, as the curing period increased, the strength of fly ash concrete (FAC) increased with or even surpassed that of conventional concrete. Analysis of the accelerated carbonation test revealed that incorporating FA into the concrete mix led to a shallower carbonation depth and slower diffusion of carbon dioxide (CO2) into the concrete. Furthermore, the half-cell potential test shows that the inclusion of FA increases the durability of RC by slowing the rate of steel-reinforcement corrosion.

Originality/value

This systematic review analyzes a wide range of existing studies on the topic, providing a comprehensive overview of the research conducted so far. This review intends to critically assess the enhancements in mechanical and durability attributes (such as CS, carbonation and corrosion resistance) of FAC and FA-RC. This systematic review has practical implications for the construction and engineering industries. This can support engineers and designers in making informed decisions regarding the use of FA in concrete mixtures, considering both its benefits and potential drawbacks.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 February 2024

Yasser M. Mater, Ahmed A. Elansary and Hany A. Abdalla

The use of recycled coarse aggregate in concrete structures promotes environmental sustainability; however, performance of these structures might be negatively impacted when it is…

Abstract

Purpose

The use of recycled coarse aggregate in concrete structures promotes environmental sustainability; however, performance of these structures might be negatively impacted when it is used as a replacement to traditional aggregate. This paper aims to simulate recycled concrete beams strengthened with carbon fiber-reinforced polymer (CFRP), to advance the modeling and use of recycled concrete structures.

Design/methodology/approach

To investigate the performance of beams with recycled coarse aggregate concrete (RCAC), finite element models (FEMs) were developed to simulate 12 preloaded RCAC beams, strengthened with two CFRP strengthening schemes. Details of the modeling are provided including the material models, boundary conditions, applied loads, analysis solver, mesh analysis and computational efficiency.

Findings

Using FEM, a parametric study was carried out to assess the influence of CFRP thickness on the strengthening efficiency. The FEM provided results in good agreement with those from the experiments with differences and standard deviation not exceeding 11.1% and 3.1%, respectively. It was found that increasing the CFRP laminate thickness improved the load-carrying capacity of the strengthened beams.

Originality/value

The developed models simulate the preloading and loading up to failure with/without CFRP strengthening for the investigated beams. Moreover, the models were validated against the experimental results of 12 beams in terms of crack pattern as well as load, deflection and strain.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 January 2024

Bashir H. Osman

Recently, the repairing of reinforced concrete (RC) structures attracted great research attentions, but the research interests were mainly concentrated on common repairing types…

Abstract

Purpose

Recently, the repairing of reinforced concrete (RC) structures attracted great research attentions, but the research interests were mainly concentrated on common repairing types. To this end, in this paper, a repairing of pre-loaded RC beams strengthened by aramid reinforcement polymers (AFRP) is presented. Furthermore, the purpose of this paper is to study the behavior of pre-loaded RC Deep beams under sustained load. The AFRP has many advantages such as controlling stresses distribution around the openings, controlling failure modes, and enhancing the structural capacity of pre-cracked RC beams.

Design/methodology/approach

Four specimens were experimentally tested: one specimen without strengthening, which is considered as control specimen, one strengthened specimen using AFRP without pre-cracking and two specimens subjected to pre-cracking load before prior to AFRP application. Furthermore, after validation of experimental data by using ANSYS software, a parametric study was conducted to investigate the effect of pre-damage level on shear capacity of RC beams. For pre-cracked beams, loading was first applied until the cracking stage, followed by specimen repairing with epoxy injection, and then the specimens were loaded again until failure point.

Findings

The result showed that pre-damage level and AFRP strengthening have great influence on the ultimate strength and failure mode. In addition, the results obtained from experimental tests were compared with those from numerical validation with ANSYS and showed good agreement.

Originality/value

Based on ACI guidelines, an analytical equation for calculating the shear strength of strengthened RC beams with openings subjected to pre-damage was then proposed, and the calculated results were compared with those from the tests, with differences not exceeding 10%.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 10 May 2024

Lu Li and Dong-hua Zhou

This paper aims to obtain a calculation method by hand without iteration.

Abstract

Purpose

This paper aims to obtain a calculation method by hand without iteration.

Design/methodology/approach

This paper adopts strains as known quantities to solve the internal forces and deformations of the section, simplifies the deflection curve of the column and obtains nomograms that can calculate the bearing capacity and reinforcement of circular reinforced concrete (RC) columns by hand.

Findings

Nomograms include five variables: mechanical reinforcement ratio, relative normal force, dimensionless bending moment, slenderness ratio and ultimate dimensionless curvature. Nomograms corresponding to all classes of concrete have been drawn, and their dimensionless form makes them widely applicable. The calculation results of nomograms are compared and analysed with numerical calculation results, and the difference is within 5%, meeting the engineering requirements.

Originality/value

Calculating the bearing capacity of compression bending components requires considering second-order effects. Therefore, the calculation of the bearing capacity of circular RC columns requires iterative calculation, as it includes dual nonlinearity of material and geometry, and the two are coupled with each other. To calculate the bearing capacity of the section adopting ordinary concrete, it is necessary to solve the transcendental equation iteratively. For high-strength concrete, it can only be solved by numerical integration. A fast calculation method by hand is proposed in this paper.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 9 February 2024

Ayad Alameeri, Gholamreza Abdollahzadeh and Seyedkomeil Hashemiheidari

This study aims to determine the effect of replacing a portion of the cement in the concrete mixture with silica fume (SF) on the corrosion resistance of reinforcing bars, the…

Abstract

Purpose

This study aims to determine the effect of replacing a portion of the cement in the concrete mixture with silica fume (SF) on the corrosion resistance of reinforcing bars, the compressive strength of concrete and the tensile strength of hook bars in both corroded and non-corroded external joints of structures. The external beam-column connection was studied because of its critical role in maintaining structural continuity in all three directions and providing resistance to rotation.

Design/methodology/approach

In external concrete joints, the bars at the end of the beams are often bent at 90° to form hooks that embed in columns. Owing to the importance of embedding distance and the need to understand its susceptibility to corrosion damage from chloride attack, a series of experiments were conducted on 12 specimens that accurately simulate real-site conditions in terms of dimensions, reinforcement and hook bars. SF was replaced with 10% and 15% of the weight of cement in the concrete mixture. To simulate corrosion, the specimens were subjected to accelerated corrosion in the laboratory by applying a low continuous current of 0.35 mA for 58 days.

Findings

The results revealed the effect of SF in improving the compressive strength of concrete, the pullout resistance of the hook bars and the corrosion resistance. In addition, it showed an apparent effect of the corrosion of reinforcing bars in reducing the bonding strength of hook bars with concrete and the effect of SF in improving this strength.

Originality/value

It was noted that the improvement of the results, achieved by replacing 10% of the weight of cement with SF, was significantly close to the results obtained by replacing 15% of the SF. It is recommended that an SF ratio of 10% be adopted to achieve the greatest economic savings.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Access

Year

Last 12 months (389)

Content type

Earlycite article (389)
1 – 10 of 389