Search results

1 – 10 of 350
To view the access options for this content please click here
Article
Publication date: 3 August 2015

Jaber Al-Juaidiyah

The purpose of this paper is to study the non-isothermal degradation kinetics of recycled polybutylene terephthalate, polytrimethylene terephthalate and polyethylene

Abstract

Purpose

The purpose of this paper is to study the non-isothermal degradation kinetics of recycled polybutylene terephthalate, polytrimethylene terephthalate and polyethylene terephthalate using thermogravimetric analysis (TGA) in a nitrogen atmosphere.

Design/methodology/approach

To achieve this goal, the author utilized standard kinetic models, such as Coats-Redfern and Kissinger equations, for analysis of the TGA data.

Findings

When applied to the TGA data, the Kissinger model resulted in a coefficient of determination (R2) value greater than 0.99.

Originality/value

This study describes the maiden application of the Kissinger model to obtain the pre-exponential factor (A) and activation energy (E) for different polyester systems used in the textile industry.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

To view the access options for this content please click here
Article
Publication date: 1 June 2021

Samuel Furka, Daniel Furka, Nitin Chandra Teja Chandra Teja Dadi, Patrik Palacka, Dominika Hromníková, Julio Ariel Dueñas Santana, Javier Díaz Pineda, Saul Dueñas Casas and Juraj Bujdák

This study aims to describe the preparation of antimicrobial material usable in 3D printing of medical devices. Despite the wealth of technological progress at the time of…

Abstract

Purpose

This study aims to describe the preparation of antimicrobial material usable in 3D printing of medical devices. Despite the wealth of technological progress at the time of the crisis caused by SARS-CoV-2 virus: Virus that causes current Pandemic situation (COVID-19), the global population had long been exposed beforehand to an acute absence of essential medical devices. As a response, a new type of composite materials intended for rapid prototyping, based on layered silicate saponite (Sap), antimicrobial dye phloxine B (PhB) and thermoplastics, has been recently developed.

Design/methodology/approach

Sap was modified with a cationic surfactant and subsequently functionalized with PhB. The hybrid material in powder form was then grounded with polyethylene terephthalate-glycol (PETG) or polylactic acid (PLA) in a precisely defined weight ratio and extruded into printing filaments. The stability and level of cytotoxicity of these materials in various physiological environments simulating the human body have been studied. The applicability of these materials in bacteria and a yeast-infected environment was evaluated.

Findings

Ideal content of the hybrid material, with respect to thermoplastic, was 15 weight %. Optimal printing temperature and speed, with respect to maintaining antimicrobial activity of the prepared materials, were T = 215°C at 50 mm/s for PETG/SapPhB and T = 230°C at 40 mm/s for PLA/SapPhB. 3 D-printed air filters made of these materials could keep inner air flow at 63.5% and 76.8% of the original value for the PLA/SapPhB and PETG/SapPhB, respectively, whereas the same components made without PhB had a 100% reduction of airflow.

Practical implications

The designed materials can be used for rapid prototyping of medical devices.

Originality/value

The new materials have been immediately used in the construction of an emergency lung ventilator, Q-vent, which has been used in different countries during the COVID-19 crisis.

Details

Rapid Prototyping Journal, vol. 27 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 20 November 2009

Mikael Lindeberg and Klas Hjort

The purpose of this paper is to present an update and the latest results from work on high aspect ratio “multiple wire” microvias in porous flexible Kapton foils for…

Abstract

Purpose

The purpose of this paper is to present an update and the latest results from work on high aspect ratio “multiple wire” microvias in porous flexible Kapton foils for printed circuit boards (PCBs).

Design/methodology/approach

Kapton foils are made porous by ion track technology and dry resist patterning. In combination with thin film deposition and electroplating the technology is used to define circuits and sensors with microvias made of many individual high aspect ratio wires. The processes are within the reach of many production environments and are suitable for flexible PCB fabrication.

Findings

The use of these novel processes enables new types of microvias and multiple wire structures in the foils for millimeter wave circuitry of substrate integrated waveguides and shielding, as well as for sensors with high thermal resistance.

Research limitations/implications

Today, through foil electroplating is fairly slow and more work should be made with copper electroplating. Ion track technology works well on polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyimide (PI) but should also be studied for novel polymer foils such as liquid crystal polymers (LCPs).

Originality/value

The paper details how ion track and PCB technology can be combined to enable a new type of through the foil via interconnect that consists of a multitude of wires. With these porous substrates, double‐sided circuits with high aspect ratio microvias and other multiple wire structures can be created using only lithography, thin film deposition, and electroplating. A new type of electrothermal sensorfoil is presented with several advantages over its competing micro electro mechanical systems (MEMS) based Si sensors.

Details

Circuit World, vol. 35 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

To view the access options for this content please click here
Article
Publication date: 1 February 2016

Alena Pietrikova, Peter Lukacs, Dagmar Jakubeczyova, Beata Ballokova, Jerzy Potencki, Grzegorz Tomaszewski, Jan Pekarek, Katerina Prikrylova and Martin Fides

This paper aims to find an optimal surface treatment of commonly used polymeric substrates for achieve the high adhesion of printed structures. For this reason, the…

Abstract

Purpose

This paper aims to find an optimal surface treatment of commonly used polymeric substrates for achieve the high adhesion of printed structures. For this reason, the investigation of substrates surfaces from different perspectives is presented in this paper.

Design/methodology/approach

The contact angle measurements as well as the roughness measurements were realised for the analysis of surface properties of investigated substrates. The impact of applied chemical agents for surface treatment onto the wettability is analysed for polyimide, polyethylene terephthalate and polyethylene naphthalene substrates.

Findings

The results prove the correlation among wettability, surface energy and work of adhesion with respect to the theoretical background. The surface treatment of polymeric substrates by chemical agents, such as acetone, toluene, ethanol, isopropyl and fluor silane polymer, has a significant impact onto the wettability of substrates which affects the final deposition process of nanoinks.

Originality/value

The main benefit of the surfaces’ investigation presented in this paper lays in surface modification by readily available chemical agents for optimising the deposition process nanoinks used in inkjet printing technology.

Details

Circuit World, vol. 42 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

To view the access options for this content please click here
Article
Publication date: 1 June 2015

Aneta Araźna, Konrad Futera, Małgorzata Jakubowska and Łucja Dybowska-Sarapuk

– The purpose of this paper is to report surface properties of treated Teonex Du Pont polyethylene naphthalate (PEN) foil substrates.

Abstract

Purpose

The purpose of this paper is to report surface properties of treated Teonex Du Pont polyethylene naphthalate (PEN) foil substrates.

Design/methodology/approach

There were three different cleaning treatments among other: argon glow discharge, dipping into alkaline solution at 60°C as well as washing in an ultrasonic bath of acetone and ethyl alcohol in room temperature. The relation between PEN foil morphology and surface properties has been studied by contact angle measurements as well as evaluation of surface roughness of PEN foil samples by atomic force microscopy (AFM).

Findings

It was found that argon glow discharge (T3) of PEN treatment caused the maximum reduction in both values of contact angles. In addition, the argon glow discharge yielded the highest PEN surface energy (51.9 mJ/m2) and polarity (0.89). On the other hand, the AFM micrographs showed that the samples T3 had the highest value of average and root mean square surface roughness. Based on the experiments results, the authors stated that the alkaline cleaning (T2 treatment) could be considered as an effective method of PEN substrate treatment.

Originality/value

The influence of different cleaning treatment on the surface properties of PEN foil to inkjet application was analyzed. In the literature, there are not a lot of papers describing examinations of surface properties of PEN foil to inkjet application by contact angle measurements and AFM analysis.

Details

Soldering & Surface Mount Technology, vol. 27 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Content available
Article
Publication date: 16 March 2012

Abstract

Details

Pigment & Resin Technology, vol. 41 no. 2
Type: Research Article
ISSN: 0369-9420

To view the access options for this content please click here
Article
Publication date: 2 May 2017

Peter Lukacs, Alena Pietrikova and Pavol Cabuk

The purpose of this paper is to find optimal sintering conditions of silver-based nano-inks for achieving the high electrical conductivity of the deposited layers applied…

Abstract

Purpose

The purpose of this paper is to find optimal sintering conditions of silver-based nano-inks for achieving the high electrical conductivity of the deposited layers applied on polyimide foils as well as the influence of ageing on the electrical conductivity. Therefore, the investigation in the field of silver layers deposited by inkjet printing technology is presented in this paper.

Design/methodology/approach

The four-point resistance measurements were realized for a detailed and precise analysis of the resistance of two different silver layers under different sintering conditions depending on the type of nano-ink varied about the recommended values. Highly accelerated stress tests (HASTs) were also applied as an ageing method for confirmation of the high electrical stability of the silver layers.

Findings

The results prove the strong influence of the temperature and the time of the sintering process on the sheet resistance of the investigated silver-based layers deposited by inkjet printing technology on polyimide foils. The HASTs caused significant changes in the electrical conductivity for both nano-inks presented in this paper. The existence of noticeable dependence among the resistivity, thermal treatment and ageing was proved.

Originality/value

The main benefit lays in the optimization of sintering conditions to improve the electrical conductivity of the silver layers. The paper also presents a new approach for a stability analysis of the silver layers by HASTs.

Details

Circuit World, vol. 43 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Content available
Article
Publication date: 6 January 2012

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 59 no. 1
Type: Research Article
ISSN: 0003-5599

To view the access options for this content please click here
Article
Publication date: 20 June 2016

Robert Bogue

This paper aims to provide details of MEMS (micro-electromechanical system) sensors produced from materials other than silicon.

Abstract

Purpose

This paper aims to provide details of MEMS (micro-electromechanical system) sensors produced from materials other than silicon.

Design/methodology/approach

Following a short introduction, this first considers reasons for using alternatives to silicon. It then discusses MEMS sensor products and research involving sapphire, quartz, silicon carbide and aluminium nitride. It then considers polymer and paper MEMS sensor developments and concludes with a brief discussion.

Findings

MEMS sensors based on the “hard” materials are well-suited to very-high-temperature- and precision-sensing applications. Some have been commercialised and there is a strong, on-going body of research. Polymer MEMS sensors are attracting great interest from the research community and have the potential to yield devices for both physical and molecular sensing that are inexpensive and simple to fabricate. The prospects for paper MEMS remain unclear but the technology may ultimately find uses in ultra-low-cost sensing of low-magnitude mechanical variables.

Originality/value

This provides a technical insight into the increasingly important role played by MEMS sensors fabricated from materials other than silicon.

Details

Sensor Review, vol. 36 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Content available

Abstract

Details

Microelectronics International, vol. 29 no. 2
Type: Research Article
ISSN: 1356-5362

1 – 10 of 350